Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning
- URL: http://arxiv.org/abs/2507.04790v3
- Date: Fri, 25 Jul 2025 06:46:34 GMT
- Title: Interaction-Merged Motion Planning: Effectively Leveraging Diverse Motion Datasets for Robust Planning
- Authors: Giwon Lee, Wooseong Jeong, Daehee Park, Jaewoo Jeong, Kuk-Jin Yoon,
- Abstract summary: We propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain.<n>IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model.<n>Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
- Score: 35.58432855626201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion planning is a crucial component of autonomous robot driving. While various trajectory datasets exist, effectively utilizing them for a target domain remains challenging due to differences in agent interactions and environmental characteristics. Conventional approaches, such as domain adaptation or ensemble learning, leverage multiple source datasets but suffer from domain imbalance, catastrophic forgetting, and high computational costs. To address these challenges, we propose Interaction-Merged Motion Planning (IMMP), a novel approach that leverages parameter checkpoints trained on different domains during adaptation to the target domain. IMMP follows a two-step process: pre-merging to capture agent behaviors and interactions, sufficiently extracting diverse information from the source domain, followed by merging to construct an adaptable model that efficiently transfers diverse interactions to the target domain. Our method is evaluated on various planning benchmarks and models, demonstrating superior performance compared to conventional approaches.
Related papers
- SocialMOIF: Multi-Order Intention Fusion for Pedestrian Trajectory Prediction [21.780343024406285]
SocialMOIF is proposed to tackle these challenges, concentrating on the higher-order intention interactions among neighboring groups.<n>Within SocialMOIF, a trajectory distribution approximator is designed to guide the trajectories toward values that align more closely with the actual data.<n>A global trajectory is introduced to enable more accurate and efficient parallel predictions.
arXiv Detail & Related papers (2025-04-22T06:14:49Z) - Predictive Planner for Autonomous Driving with Consistency Models [5.966385886363771]
Trajectory prediction and planning are essential for autonomous vehicles to navigate safely and efficiently in dynamic environments.<n>Recent diffusion-based generative models have shown promise in multi-agent trajectory generation, but their slow sampling is less suitable for high-frequency planning tasks.<n>We leverage the consistency model to build a predictive planner that samples from a joint distribution of ego and surrounding agents, conditioned on the ego vehicle's navigational goal.
arXiv Detail & Related papers (2025-02-12T00:26:01Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce collision-free, kinematically feasible trajectories.<n>The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.<n>It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.<n>We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - Dynamic Detection of Relevant Objectives and Adaptation to Preference Drifts in Interactive Evolutionary Multi-Objective Optimization [2.4374097382908477]
We study the dynamic nature of DM preferences, which can evolve throughout the decision-making process and affect the relevance of objectives.
We propose methods to discard outdated or conflicting preferences when such shifts occur.
Our experimental results demonstrate that the proposed methods effectively manage evolving preferences and significantly enhance the quality and desirability of the solutions produced by the algorithm.
arXiv Detail & Related papers (2024-11-07T09:09:06Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.
This setting neglects the more practical scenario where training data are collected from multiple sources.
This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains.
arXiv Detail & Related papers (2023-11-21T13:12:21Z) - Improving Anomaly Segmentation with Multi-Granularity Cross-Domain
Alignment [17.086123737443714]
Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems.
While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains.
We introduce the Multi-Granularity Cross-Domain Alignment framework, tailored to harmonize features across domains at both the scene and individual sample levels.
arXiv Detail & Related papers (2023-08-16T22:54:49Z) - Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning.
We present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets.
arXiv Detail & Related papers (2023-05-28T04:08:40Z) - JFP: Joint Future Prediction with Interactive Multi-Agent Modeling for
Autonomous Driving [12.460224193998362]
We propose an end-to-end trainable model that learns directly the interaction between pairs of agents in a structured, graphical model formulation.
Our approach improves significantly on the trajectory overlap metrics while obtaining on-par or better performance on single-agent trajectory metrics.
arXiv Detail & Related papers (2022-12-16T20:59:21Z) - Multi-path Neural Networks for On-device Multi-domain Visual
Classification [55.281139434736254]
This paper proposes a novel approach to automatically learn a multi-path network for multi-domain visual classification on mobile devices.
The proposed multi-path network is learned from neural architecture search by applying one reinforcement learning controller for each domain to select the best path in the super-network created from a MobileNetV3-like search space.
The determined multi-path model selectively shares parameters across domains in shared nodes while keeping domain-specific parameters within non-shared nodes in individual domain paths.
arXiv Detail & Related papers (2020-10-10T05:13:49Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.