Application and Evaluation of Large Language Models for Forecasting the Impact of Traffic Incidents
- URL: http://arxiv.org/abs/2507.04803v1
- Date: Mon, 07 Jul 2025 09:22:06 GMT
- Title: Application and Evaluation of Large Language Models for Forecasting the Impact of Traffic Incidents
- Authors: George Jagadeesh, Srikrishna Iyer, Michal Polanowski, Kai Xin Thia,
- Abstract summary: This study examines the feasibility of applying large language models (LLMs) for forecasting the impact of traffic incidents on the traffic flow.<n>We propose a fully LLM-based solution that predicts the incident impact using a combination of traffic features and LLM-extracted incident features.<n>We evaluate the performance of three advanced LLMs and two state-of-the-art machine learning models on a real traffic incident dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study examines the feasibility of applying large language models (LLMs) for forecasting the impact of traffic incidents on the traffic flow. The use of LLMs for this task has several advantages over existing machine learning-based solutions such as not requiring a large training dataset and the ability to utilize free-text incident logs. We propose a fully LLM-based solution that predicts the incident impact using a combination of traffic features and LLM-extracted incident features. A key ingredient of this solution is an effective method of selecting examples for the LLM's in-context learning. We evaluate the performance of three advanced LLMs and two state-of-the-art machine learning models on a real traffic incident dataset. The results show that the best-performing LLM matches the accuracy of the most accurate machine learning model, despite the former not having been trained on this prediction task. The findings indicate that LLMs are a practically viable option for traffic incident impact prediction.
Related papers
- FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain [14.109309236798518]
Supervised fine-tuning (SFT) is a standard approach to adapting large language models (LLMs) to new domains.<n>In this work, we improve the statistical efficiency of SFT by selecting an informative subset of training examples.
arXiv Detail & Related papers (2025-05-20T18:41:34Z) - Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.<n>Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Mitigating Forgetting in LLM Fine-Tuning via Low-Perplexity Token Learning [61.99353167168545]
We show that fine-tuning with LLM-generated data improves target task performance and reduces non-target task degradation.<n>This is the first work to provide an empirical explanation based on token perplexity reduction to mitigate catastrophic forgetting in LLMs after fine-tuning.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Multi-Objective Large Language Model Unlearning [3.372396620898397]
Gradient Ascent (GA) is a proactive way to decrease the prediction probability of the model on the target data.<n>We propose Multi-Objective Large Language Model Unlearning (MOLLM) algorithm to overcome gradient explosion and catastrophic forgetting.<n>Our empirical results verify that MoLLM outperforms the SOTA GA-based LLM unlearning methods in terms of unlearning effect and model utility preservation.
arXiv Detail & Related papers (2024-12-29T09:35:56Z) - Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.<n>We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.<n>We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.<n>Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Harnessing Large Language Models as Post-hoc Correctors [6.288056740658763]
We show that an LLM can work as a post-hoc corrector to propose corrections for the predictions of an arbitrary Machine Learning model.
We form a contextual knowledge database by incorporating the dataset's label information and the ML model's predictions on the validation dataset.
Our experimental results on text analysis and the challenging molecular predictions show that model improves the performance of a number of models by up to 39%.
arXiv Detail & Related papers (2024-02-20T22:50:41Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Interpret-able feedback for AutoML systems [5.5524559605452595]
Automated machine learning (AutoML) systems aim to enable training machine learning (ML) models for non-ML experts.
A shortcoming of these systems is that when they fail to produce a model with high accuracy, the user has no path to improve the model.
We introduce an interpretable data feedback solution for AutoML.
arXiv Detail & Related papers (2021-02-22T18:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.