FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain
- URL: http://arxiv.org/abs/2505.14826v1
- Date: Tue, 20 May 2025 18:41:34 GMT
- Title: FisherSFT: Data-Efficient Supervised Fine-Tuning of Language Models Using Information Gain
- Authors: Rohan Deb, Kiran Thekumparampil, Kousha Kalantari, Gaurush Hiranandani, Shoham Sabach, Branislav Kveton,
- Abstract summary: Supervised fine-tuning (SFT) is a standard approach to adapting large language models (LLMs) to new domains.<n>In this work, we improve the statistical efficiency of SFT by selecting an informative subset of training examples.
- Score: 14.109309236798518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised fine-tuning (SFT) is a standard approach to adapting large language models (LLMs) to new domains. In this work, we improve the statistical efficiency of SFT by selecting an informative subset of training examples. Specifically, for a fixed budget of training examples, which determines the computational cost of fine-tuning, we determine the most informative ones. The key idea in our method is to select examples that maximize information gain, measured by the Hessian of the log-likelihood of the LLM. We approximate it efficiently by linearizing the LLM at the last layer using multinomial logistic regression models. Our approach is computationally efficient, analyzable, and performs well empirically. We demonstrate this on several problems, and back our claims with both quantitative results and an LLM evaluation.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - SLearnLLM: A Self-Learning Framework for Efficient Domain-Specific Adaptation of Large Language Models [7.44035983292392]
We propose a self-learning framework for large language models (LLMs) inspired by human learning pattern.<n>This framework takes a fine-tuning (SFT) dataset in a specific domain as input.<n>We show that our method substantially reduces training time while achieving comparable improvements to those attained with full dataset fine-tuning.
arXiv Detail & Related papers (2025-05-23T04:50:54Z) - Rethinking Data: Towards Better Performing Domain-Specific Small Language Models [0.0]
This paper presents our approach to finetuning a small Language Models (LM)<n>We achieve this by improving data quality at each stage of the LM training pipeline.<n>We improve the model generalization ability by merging the models fine-tuned with different parameters on different data subsets.
arXiv Detail & Related papers (2025-03-03T12:19:12Z) - Optimizing Pretraining Data Mixtures with LLM-Estimated Utility [52.08428597962423]
Large Language Models improve with increasing amounts of high-quality training data.<n>We find token-counts outperform manual and learned mixes, indicating that simple approaches for dataset size and diversity are surprisingly effective.<n>We propose two complementary approaches: UtiliMax, which extends token-based $200s by incorporating utility estimates from reduced-scale ablations, achieving up to a 10.6x speedup over manual baselines; and Model Estimated Data Utility (MEDU), which leverages LLMs to estimate data utility from small samples, matching ablation-based performance while reducing computational requirements by $simx.
arXiv Detail & Related papers (2025-01-20T21:10:22Z) - Efficient Alignment of Large Language Models via Data Sampling [0.4915744683251149]
We propose an information theory-based methodology for efficient alignment by identifying a small high quality subset.<n>We find that the model aligned using our proposed methodology outperforms other sampling methods and performs comparable to the model aligned with the full dataset.
arXiv Detail & Related papers (2024-11-15T19:36:15Z) - A Gradient Analysis Framework for Rewarding Good and Penalizing Bad Examples in Language Models [63.949883238901414]
We present a unique angle of gradient analysis of loss functions that simultaneously reward good examples and penalize bad ones in LMs.
We find that ExMATE serves as a superior surrogate for MLE, and that combining DPO with ExMATE instead of MLE further enhances both the statistical (5-7%) and generative (+18% win rate) performance.
arXiv Detail & Related papers (2024-08-29T17:46:18Z) - Simple and Scalable Strategies to Continually Pre-train Large Language Models [20.643648785602462]
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available.
We show that a simple and scalable combination of learning rate re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch.
arXiv Detail & Related papers (2024-03-13T17:58:57Z) - Regression-aware Inference with LLMs [52.764328080398805]
We show that an inference strategy can be sub-optimal for common regression and scoring evaluation metrics.
We propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.
arXiv Detail & Related papers (2024-03-07T03:24:34Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Which Examples to Annotate for In-Context Learning? Towards Effective
and Efficient Selection [35.924633625147365]
Large Language Models (LLMs) can adapt to new tasks via in-context learning (ICL)
In this work, we investigate an active learning approach for ICL, where there is a limited budget for annotating examples.
We propose a model-adaptive optimization-free algorithm, termed AdaICL, which identifies examples that the model is uncertain about.
arXiv Detail & Related papers (2023-10-30T22:03:55Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.