Kalman Filter Aided Federated Koopman Learning
- URL: http://arxiv.org/abs/2507.04808v1
- Date: Mon, 07 Jul 2025 09:26:20 GMT
- Title: Kalman Filter Aided Federated Koopman Learning
- Authors: Yutao Chen, Wei Chen,
- Abstract summary: We propose Kalman Filter aided Federated Koopman Learning (KF-FedKL)<n>KF-FedKL pioneers the combination of Kalman filtering and federated learning with Koopman analysis.<n>Specifically, we employ a straightforward yet efficient loss function to drive the training of a deep Koopman network for linearization.
- Score: 9.87932387334792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-time control and estimation are pivotal for applications such as industrial automation and future healthcare. The realization of this vision relies heavily on efficient interactions with nonlinear systems. Therefore, Koopman learning, which leverages the power of deep learning to linearize nonlinear systems, has been one of the most successful examples of mitigating the complexity inherent in nonlinearity. However, the existing literature assumes access to accurate system states and abundant high-quality data for Koopman analysis, which is usually impractical in real-world scenarios. To fill this void, this paper considers the case where only observations of the system are available and where the observation data is insufficient to accomplish an independent Koopman analysis. To this end, we propose Kalman Filter aided Federated Koopman Learning (KF-FedKL), which pioneers the combination of Kalman filtering and federated learning with Koopman analysis. By doing so, we can achieve collaborative linearization with privacy guarantees. Specifically, we employ a straightforward yet efficient loss function to drive the training of a deep Koopman network for linearization. To obtain system information devoid of individual information from observation data, we leverage the unscented Kalman filter and the unscented Rauch-Tung-Striebel smoother. To achieve collaboration between clients, we adopt the federated learning framework and develop a modified FedAvg algorithm to orchestrate the collaboration. A convergence analysis of the proposed framework is also presented. Finally, through extensive numerical simulations, we showcase the performance of KF-FedKL under various situations.
Related papers
- Limits and Powers of Koopman Learning [0.0]
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences.
Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques.
This paper addresses a fundamental open question: textitWhen can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not?
arXiv Detail & Related papers (2024-07-08T18:24:48Z) - Nonparametric Sparse Online Learning of the Koopman Operator [11.710740395697128]
Existing data-driven approaches to learning the Koopman operator rely on batch data.<n>We present a sparse online learning algorithm that learns the Koopman operator iteratively via approximation.<n> Numerical experiments demonstrate the algorithm's capability to learn unknown nonlinear dynamics.
arXiv Detail & Related papers (2024-05-13T02:18:49Z) - Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
Federated learning is an emerging distributed machine learning framework aiming at protecting data privacy.
Data in different clients contain both common knowledge and personalized knowledge.
We develop a novel personalized federated learning framework for heterogeneous data, which we refer to as FedSplit.
arXiv Detail & Related papers (2023-12-07T13:05:47Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Equivariance and partial observations in Koopman operator theory for partial differential equations [1.099532646524593]
We show that symmetries in the system dynamics can be carried over to the Koopman operator.
We address the highly-relevant case where we cannot measure the full state.
arXiv Detail & Related papers (2023-07-28T06:03:19Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
We find that curriculum learning largely alleviates non-IIDness.
The more disparate the data distributions across clients the more they benefit from learning.
We propose a novel client selection technique that benefits from the real-world disparity in the clients.
arXiv Detail & Related papers (2022-12-24T11:02:35Z) - KalmanNet: Neural Network Aided Kalman Filtering for Partially Known
Dynamics [84.18625250574853]
We present KalmanNet, a real-time state estimator that learns from data to carry out Kalman filtering under non-linear dynamics.
We numerically demonstrate that KalmanNet overcomes nonlinearities and model mismatch, outperforming classic filtering methods.
arXiv Detail & Related papers (2021-07-21T12:26:46Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
This paper empirically demonstrates that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity.
We provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients' updates.
arXiv Detail & Related papers (2021-06-25T14:47:19Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Extraction of Discrete Spectra Modes from Video Data Using a Deep
Convolutional Koopman Network [0.0]
Recent deep learning extensions in Koopman theory have enabled compact, interpretable representations of nonlinear dynamical systems.
Deep Koopman networks attempt to learn the Koopman eigenfunctions which capture the coordinate transformation to globally linearize system dynamics.
We demonstrate the ability of a deep convolutional Koopman network (CKN) in automatically identifying independent modes for dynamical systems with discrete spectra.
arXiv Detail & Related papers (2020-10-19T06:26:29Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
A new class of physics-based methods related to Koopman theory has been introduced, offering an alternative for processing nonlinear dynamical systems.
We propose a novel Consistent Koopman Autoencoder model which, unlike the majority of existing work, leverages the forward and backward dynamics.
Key to our approach is a new analysis which explores the interplay between consistent dynamics and their associated Koopman operators.
arXiv Detail & Related papers (2020-03-04T18:24:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.