Fast-VGAN: Lightweight Voice Conversion with Explicit Control of F0 and Duration Parameters
- URL: http://arxiv.org/abs/2507.04817v1
- Date: Mon, 07 Jul 2025 09:36:00 GMT
- Title: Fast-VGAN: Lightweight Voice Conversion with Explicit Control of F0 and Duration Parameters
- Authors: Mathilde Abrassart, Nicolas Obin, Axel Roebel,
- Abstract summary: Control over speech characteristics, such as pitch, duration, and speech rate, remains a significant challenge in the field of voice conversion.<n>We propose a convolutional neural network-based approach that aims to provide means for modifying fundamental frequency (F0), phoneme sequences, intensity, and speaker identity.<n>The results suggest that the proposed method offers substantial flexibility, while maintaining high intelligibility and speaker similarity.
- Score: 7.865191493201841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise control over speech characteristics, such as pitch, duration, and speech rate, remains a significant challenge in the field of voice conversion. The ability to manipulate parameters like pitch and syllable rate is an important element for effective identity conversion, but can also be used independently for voice transformation, achieving goals that were historically addressed by vocoder-based methods. In this work, we explore a convolutional neural network-based approach that aims to provide means for modifying fundamental frequency (F0), phoneme sequences, intensity, and speaker identity. Rather than relying on disentanglement techniques, our model is explicitly conditioned on these factors to generate mel spectrograms, which are then converted into waveforms using a universal neural vocoder. Accordingly, during inference, F0 contours, phoneme sequences, and speaker embeddings can be freely adjusted, allowing for intuitively controlled voice transformations. We evaluate our approach on speaker conversion and expressive speech tasks using both perceptual and objective metrics. The results suggest that the proposed method offers substantial flexibility, while maintaining high intelligibility and speaker similarity.
Related papers
- Discl-VC: Disentangled Discrete Tokens and In-Context Learning for Controllable Zero-Shot Voice Conversion [16.19865417052239]
Discl-VC is a novel zero-shot voice conversion framework.<n>It disentangles content and prosody information from self-supervised speech representations.<n>It synthesizes the target speaker's voice through in-context learning.
arXiv Detail & Related papers (2025-05-30T07:04:23Z) - Controllable speech synthesis by learning discrete phoneme-level
prosodic representations [53.926969174260705]
We present a novel method for phoneme-level prosody control of F0 and duration using intuitive discrete labels.
We propose an unsupervised prosodic clustering process which is used to discretize phoneme-level F0 and duration features from a multispeaker speech dataset.
arXiv Detail & Related papers (2022-11-29T15:43:36Z) - Disentangled Feature Learning for Real-Time Neural Speech Coding [24.751813940000993]
In this paper, instead of blind end-to-end learning, we propose to learn disentangled features for real-time neural speech coding.
We find that the learned disentangled features show comparable performance on any-to-any voice conversion with modern self-supervised speech representation learning models.
arXiv Detail & Related papers (2022-11-22T02:50:12Z) - DisC-VC: Disentangled and F0-Controllable Neural Voice Conversion [17.83563578034567]
We propose a new variational-autoencoder-based voice conversion model accompanied by an auxiliary network.
We show the effectiveness of the proposed method by objective and subjective evaluations.
arXiv Detail & Related papers (2022-10-20T07:30:07Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
This paper proposes an any-to-many location-relative, sequence-to-sequence (seq2seq), non-parallel voice conversion approach.
In this approach, we combine a bottle-neck feature extractor (BNE) with a seq2seq synthesis module.
Objective and subjective evaluations show that the proposed any-to-many approach has superior voice conversion performance in terms of both naturalness and speaker similarity.
arXiv Detail & Related papers (2020-09-06T13:01:06Z) - Spectrum and Prosody Conversion for Cross-lingual Voice Conversion with
CycleGAN [81.79070894458322]
Cross-lingual voice conversion aims to change source speaker's voice to sound like that of target speaker, when source and target speakers speak different languages.
Previous studies on cross-lingual voice conversion mainly focus on spectral conversion with a linear transformation for F0 transfer.
We propose the use of continuous wavelet transform (CWT) decomposition for F0 modeling. CWT provides a way to decompose a signal into different temporal scales that explain prosody in different time resolutions.
arXiv Detail & Related papers (2020-08-11T07:29:55Z) - Many-to-Many Voice Transformer Network [55.17770019619078]
This paper proposes a voice conversion (VC) method based on a sequence-to-sequence (S2S) learning framework.
It enables simultaneous conversion of the voice characteristics, pitch contour, and duration of input speech.
arXiv Detail & Related papers (2020-05-18T04:02:08Z) - End-to-End Whisper to Natural Speech Conversion using Modified
Transformer Network [0.8399688944263843]
We introduce whisper-to-natural-speech conversion using sequence-to-sequence approach.
We investigate different features like Mel frequency cepstral coefficients and smoothed spectral features.
The proposed networks are trained end-to-end using supervised approach for feature-to-feature transformation.
arXiv Detail & Related papers (2020-04-20T14:47:46Z) - F0-consistent many-to-many non-parallel voice conversion via conditional
autoencoder [53.901873501494606]
We modified and improved autoencoder-based voice conversion to disentangle content, F0, and speaker identity at the same time.
We can control the F0 contour, generate speech with F0 consistent with the target speaker, and significantly improve quality and similarity.
arXiv Detail & Related papers (2020-04-15T22:00:06Z) - Vocoder-free End-to-End Voice Conversion with Transformer Network [5.5792083698526405]
Mel-frequency filter bank (MFB) based approaches have the advantage of learning speech compared to raw spectrum since MFB has less feature size.
It is possible to only use the raw spectrum along with the phase to generate different style of voices with clear pronunciation.
In this paper, we introduce a vocoder-free end-to-end voice conversion method using transformer network.
arXiv Detail & Related papers (2020-02-05T06:19:24Z) - Transforming Spectrum and Prosody for Emotional Voice Conversion with
Non-Parallel Training Data [91.92456020841438]
Many studies require parallel speech data between different emotional patterns, which is not practical in real life.
We propose a CycleGAN network to find an optimal pseudo pair from non-parallel training data.
We also study the use of continuous wavelet transform (CWT) to decompose F0 into ten temporal scales, that describes speech prosody at different time resolution.
arXiv Detail & Related papers (2020-02-01T12:36:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.