Hybrid Approach to Directed Fuzzing
- URL: http://arxiv.org/abs/2507.04855v1
- Date: Mon, 07 Jul 2025 10:29:16 GMT
- Title: Hybrid Approach to Directed Fuzzing
- Authors: Darya Parygina, Timofey Mezhuev, Daniil Kuts,
- Abstract summary: We propose a hybrid approach to directed fuzzing with novel seed scheduling algorithm.<n>We implement our approach in Sydr-Fuzz tool using LibAFL-DiFuzz as directed fuzzer and Sydr as dynamic symbolic executor.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Program analysis and automated testing have recently become an essential part of SSDLC. Directed greybox fuzzing is one of the most popular automated testing methods that focuses on error detection in predefined code regions. However, it still lacks ability to overcome difficult program constraints. This problem can be well addressed by symbolic execution, but at the cost of lower performance. Thus, combining directed fuzzing and symbolic execution techniques can lead to more efficient error detection. In this paper, we propose a hybrid approach to directed fuzzing with novel seed scheduling algorithm, based on target-related interestingness and coverage. The approach also performs minimization and sorting of objective seeds according to a target-related information. We implement our approach in Sydr-Fuzz tool using LibAFL-DiFuzz as directed fuzzer and Sydr as dynamic symbolic executor. We evaluate our approach with Time to Exposure metric and compare it with pure LibAFL-DiFuzz, AFLGo, BEACON, WAFLGo, WindRanger, FishFuzz, and Prospector. The results show an improvement for 3 out of 7 examples with speedup up to 1.86 times over the second best result, as well as a significant improvement for 3 out of 7 examples over the pure LibAFL-DiFuzz fuzzer. Sydr-Fuzz hybrid approach to directed fuzzing shows high performance and helps to improve directed fuzzing efficiency.
Related papers
- LLAMA: Multi-Feedback Smart Contract Fuzzing Framework with LLM-Guided Seed Generation [56.84049855266145]
We propose a Multi-feedback Smart Contract Fuzzing framework (LLAMA) that integrates evolutionary mutation strategies, and hybrid testing techniques.<n>LLAMA achieves 91% instruction coverage and 90% branch coverage, while detecting 132 out of 148 known vulnerabilities.<n>These results highlight LLAMA's effectiveness, adaptability, and practicality in real-world smart contract security testing scenarios.
arXiv Detail & Related papers (2025-07-16T09:46:58Z) - LibAFL-DiFuzz: Advanced Architecture Enabling Directed Fuzzing [0.0]
We construct flexible tool for directed fuzzing with components able to be easily combined with other techniques.<n>We evaluate our fuzzer in comparison with AFLGo and BEACON, and reveal speedup in time to exposure on several benchmarks.
arXiv Detail & Related papers (2024-12-26T09:54:57Z) - Large Language Model assisted Hybrid Fuzzing [8.603235938006632]
We show how to achieve the effect of concolic execution without having to compute and solve symbolic path constraints.<n>A Large Language Model (LLM) is used as a solver to generate the modified input for reaching the desired branches.
arXiv Detail & Related papers (2024-12-20T14:23:25Z) - FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
We propose to adopt fine-tuned large language models (FuzzCoder) to learn patterns in the input files from successful attacks.
FuzzCoder can predict mutation locations and strategies locations in input files to trigger abnormal behaviors of the program.
arXiv Detail & Related papers (2024-09-03T14:40:31Z) - HuntFUZZ: Enhancing Error Handling Testing through Clustering Based Fuzzing [19.31537246674011]
This paper introduces HuntFUZZ, a novel SFI-based fuzzing framework that addresses the issue of redundant testing of error points with correlated paths.
We evaluate HuntFUZZ on a diverse set of 42 applications, and HuntFUZZ successfully reveals 162 known bugs, with 62 of them being related to error handling.
arXiv Detail & Related papers (2024-07-05T06:58:30Z) - PrescientFuzz: A more effective exploration approach for grey-box fuzzing [0.45053464397400894]
We produce an augmented version of LibAFL's fuzzbench' fuzzer, called PrescientFuzz, that makes use of semantic information from the target program's control flow graph (CFG)<n>We develop an input corpus scheduler that prioritises the selection of inputs for mutation based on the proximity of their execution path to uncovered edges.
arXiv Detail & Related papers (2024-04-29T17:21:18Z) - FABind: Fast and Accurate Protein-Ligand Binding [127.7790493202716]
$mathbfFABind$ is an end-to-end model that combines pocket prediction and docking to achieve accurate and fast protein-ligand binding.
Our proposed model demonstrates strong advantages in terms of effectiveness and efficiency compared to existing methods.
arXiv Detail & Related papers (2023-10-10T16:39:47Z) - Fuzzing with Quantitative and Adaptive Hot-Bytes Identification [6.442499249981947]
American fuzzy lop, a leading fuzzing tool, has demonstrated its powerful bug finding ability through a vast number of reported CVEs.
We propose an approach called toolwhich is designed based on the following principles.
Our evaluation results on 10 real-world programs and LAVA-M dataset show that toolachieves sustained increases in branch coverage and discovers more bugs than other fuzzers.
arXiv Detail & Related papers (2023-07-05T13:41:35Z) - UNICON: Combating Label Noise Through Uniform Selection and Contrastive
Learning [89.56465237941013]
We propose UNICON, a simple yet effective sample selection method which is robust to high label noise.
We obtain an 11.4% improvement over the current state-of-the-art on CIFAR100 dataset with a 90% noise rate.
arXiv Detail & Related papers (2022-03-28T07:36:36Z) - Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm [93.80082636284922]
Sparse adversarial attacks can fool deep networks (DNNs) by only perturbing a few pixels.
Recent efforts combine it with another l_infty perturbation on magnitudes.
We propose a homotopy algorithm to tackle the sparsity and neural perturbation framework.
arXiv Detail & Related papers (2021-06-10T20:11:36Z) - Transferable Sparse Adversarial Attack [62.134905824604104]
We introduce a generator architecture to alleviate the overfitting issue and thus efficiently craft transferable sparse adversarial examples.
Our method achieves superior inference speed, 700$times$ faster than other optimization-based methods.
arXiv Detail & Related papers (2021-05-31T06:44:58Z) - FastLR: Non-Autoregressive Lipreading Model with Integrate-and-Fire [74.04394069262108]
We propose FastLR, a non-autoregressive (NAR) lipreading model which generates all target tokens simultaneously.
FastLR achieves the speedup up to 10.97$times$ compared with state-of-the-art lipreading model.
arXiv Detail & Related papers (2020-08-06T08:28:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.