LLAMA: Multi-Feedback Smart Contract Fuzzing Framework with LLM-Guided Seed Generation
- URL: http://arxiv.org/abs/2507.12084v1
- Date: Wed, 16 Jul 2025 09:46:58 GMT
- Title: LLAMA: Multi-Feedback Smart Contract Fuzzing Framework with LLM-Guided Seed Generation
- Authors: Keke Gai, Haochen Liang, Jing Yu, Liehuang Zhu, Dusit Niyato,
- Abstract summary: We propose a Multi-feedback Smart Contract Fuzzing framework (LLAMA) that integrates evolutionary mutation strategies, and hybrid testing techniques.<n>LLAMA achieves 91% instruction coverage and 90% branch coverage, while detecting 132 out of 148 known vulnerabilities.<n>These results highlight LLAMA's effectiveness, adaptability, and practicality in real-world smart contract security testing scenarios.
- Score: 56.84049855266145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart contracts play a pivotal role in blockchain ecosystems, and fuzzing remains an important approach to securing smart contracts. Even though mutation scheduling is a key factor influencing fuzzing effectiveness, existing fuzzers have primarily explored seed scheduling and generation, while mutation scheduling has been rarely addressed by prior work. In this work, we propose a Large Language Models (LLMs)-based Multi-feedback Smart Contract Fuzzing framework (LLAMA) that integrates LLMs, evolutionary mutation strategies, and hybrid testing techniques. Key components of the proposed LLAMA include: (i) a hierarchical prompting strategy that guides LLMs to generate semantically valid initial seeds, coupled with a lightweight pre-fuzzing phase to select high-potential inputs; (ii) a multi-feedback optimization mechanism that simultaneously improves seed generation, seed selection, and mutation scheduling by leveraging runtime coverage and dependency feedback; and (iii) an evolutionary fuzzing engine that dynamically adjusts mutation operator probabilities based on effectiveness, while incorporating symbolic execution to escape stagnation and uncover deeper vulnerabilities. Our experiments demonstrate that LLAMA outperforms state-of-the-art fuzzers in both coverage and vulnerability detection. Specifically, it achieves 91% instruction coverage and 90% branch coverage, while detecting 132 out of 148 known vulnerabilities across diverse categories. These results highlight LLAMA's effectiveness, adaptability, and practicality in real-world smart contract security testing scenarios.
Related papers
- SAEL: Leveraging Large Language Models with Adaptive Mixture-of-Experts for Smart Contract Vulnerability Detection [14.581402965011117]
We propose SAEL, an LLM-based framework for smart contract vulnerability detection.<n>We first design targeted prompts to guide LLMs in identifying vulnerabilities and generating explanations.<n>Next, we apply prompt-tuning on CodeT5 and T5 to process contract code and explanations, enhancing task-specific performance.
arXiv Detail & Related papers (2025-07-30T04:28:00Z) - HeurAgenix: Leveraging LLMs for Solving Complex Combinatorial Optimization Challenges [10.088078143772563]
Heuristic algorithms play a vital role in solving optimization (CO) problems.<n>HeurAgenix is a two-stage hyper-heuristic framework powered by large language models (LLMs)
arXiv Detail & Related papers (2025-06-18T07:20:01Z) - Enabling Flexible Multi-LLM Integration for Scalable Knowledge Aggregation [45.72492804683268]
Large language models (LLMs) have shown remarkable promise but remain challenging to continually improve through traditional finetuning.<n>We propose a framework that adaptively selects and aggregates knowledge from diverse LLMs to build a single, stronger model.
arXiv Detail & Related papers (2025-05-28T16:24:50Z) - Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One [28.264011412168347]
Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents.<n>We propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings.
arXiv Detail & Related papers (2025-05-21T09:35:43Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents [54.29555239363013]
We propose a generic black-box fuzzing framework, AgentVigil, to automatically discover and exploit indirect prompt injection vulnerabilities.<n>We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o.<n>We apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
arXiv Detail & Related papers (2025-05-09T07:40:17Z) - PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models via Bilevel Optimization [13.751251342738225]
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of applications.<n>They also exhibit inherent limitations, such as outdated knowledge and susceptibility to hallucinations.<n>Recent efforts have focused on the security of RAG-based LLMs, yet existing attack methods face three critical challenges.<n>We propose coordinated Prompt-RAG attack (PR-attack), a novel optimization-driven attack that introduces a small number of poisoned texts into the knowledge database.
arXiv Detail & Related papers (2025-04-10T13:09:50Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently.<n>The concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM.<n>In this paper, the problem of enabling edge users to collaboratively craft such MTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks.
arXiv Detail & Related papers (2024-11-27T10:57:06Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.