Semantically Consistent Discrete Diffusion for 3D Biological Graph Modeling
- URL: http://arxiv.org/abs/2507.04856v1
- Date: Mon, 07 Jul 2025 10:29:54 GMT
- Title: Semantically Consistent Discrete Diffusion for 3D Biological Graph Modeling
- Authors: Chinmay Prabhakar, Suprosanna Shit, Tamaz Amiranashvili, Hongwei Bran Li, Bjoern Menze,
- Abstract summary: We propose a novel 3D biological graph generation method that adheres to structural and semantic plausibility conditions.<n>Our method demonstrates superior performance on two real-world datasets, human circle of Willis and lung airways.
- Score: 2.737421165924947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D spatial graphs play a crucial role in biological and clinical research by modeling anatomical networks such as blood vessels,neurons, and airways. However, generating 3D biological graphs while maintaining anatomical validity remains challenging, a key limitation of existing diffusion-based methods. In this work, we propose a novel 3D biological graph generation method that adheres to structural and semantic plausibility conditions. We achieve this by using a novel projection operator during sampling that stochastically fixes inconsistencies. Further, we adopt a superior edge-deletion-based noising procedure suitable for sparse biological graphs. Our method demonstrates superior performance on two real-world datasets, human circle of Willis and lung airways, compared to previous approaches. Importantly, we demonstrate that the generated samples significantly enhance downstream graph labeling performance. Furthermore, we show that our generative model is a reasonable out-of-the-box link predictior.
Related papers
- Adversarial Curriculum Graph-Free Knowledge Distillation for Graph Neural Networks [61.608453110751206]
We propose a fast and high-quality data-free knowledge distillation approach for graph neural networks.<n>The proposed graph-free KD method (ACGKD) significantly reduces the spatial complexity of pseudo-graphs.<n>ACGKD eliminates the dimensional ambiguity between the student and teacher models by increasing the student's dimensions.
arXiv Detail & Related papers (2025-04-01T08:44:27Z) - Interpretable Retinal Disease Prediction Using Biology-Informed Heterogeneous Graph Representations [40.8160960729546]
Interpretability is crucial to enhance trust in machine learning models for medical diagnostics.<n>This work proposes a method that surpasses the performance of established machine learning models.
arXiv Detail & Related papers (2025-02-23T19:27:47Z) - 3D Vessel Graph Generation Using Denoising Diffusion [4.100929120985704]
Blood vessel networks, represented as 3D graphs, help predict disease biomarkers, simulate blood flow, and aid in synthetic image generation.
Previous methods aimed at generating vessel trees mostly in an autoregressive style and could not be applied to vessel graphs with cycles such as capillaries.
We introduce the first application of textitdenoising diffusion models in 3D vessel graph generation.
arXiv Detail & Related papers (2024-07-08T11:39:21Z) - Advancing Graph Generation through Beta Diffusion [49.49740940068255]
Graph Beta Diffusion (GBD) is a generative model specifically designed to handle the diverse nature of graph data.
We propose a modulation technique that enhances the realism of generated graphs by stabilizing critical graph topology.
arXiv Detail & Related papers (2024-06-13T17:42:57Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - Directional diffusion models for graph representation learning [9.457273750874357]
We propose a new class of models called it directional diffusion models
These models incorporate data-dependent, anisotropic, and directional noises in the forward diffusion process.
We conduct extensive experiments on 12 publicly available datasets, focusing on two distinct graph representation learning tasks.
arXiv Detail & Related papers (2023-06-22T21:27:48Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z) - Anatomical Landmarks Localization for 3D Foot Point Clouds [3.1918817988202606]
We introduce a deformation method for 3D anatomical landmarks prediction.
It utilizes a source model with anatomical landmarks annotated by clinicians, and deforms this model non-rigidly to match the target model.
Experiments are performed on our dataset and the results demonstrate the robustness of our method.
arXiv Detail & Related papers (2021-10-03T06:24:40Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.