Anatomical Landmarks Localization for 3D Foot Point Clouds
- URL: http://arxiv.org/abs/2110.00937v1
- Date: Sun, 3 Oct 2021 06:24:40 GMT
- Title: Anatomical Landmarks Localization for 3D Foot Point Clouds
- Authors: Sheldon Fung, Xuequan Lu, Mantas Mykolaitis, Gediminas Kostkevicius,
Domantas Ozerenskis
- Abstract summary: We introduce a deformation method for 3D anatomical landmarks prediction.
It utilizes a source model with anatomical landmarks annotated by clinicians, and deforms this model non-rigidly to match the target model.
Experiments are performed on our dataset and the results demonstrate the robustness of our method.
- Score: 3.1918817988202606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D anatomical landmarks play an important role in health research. Their
automated prediction/localization thus becomes a vital task. In this paper, we
introduce a deformation method for 3D anatomical landmarks prediction. It
utilizes a source model with anatomical landmarks which are annotated by
clinicians, and deforms this model non-rigidly to match the target model. Two
constraints are introduced in the optimization, which are responsible for
alignment and smoothness, respectively. Experiments are performed on our
dataset and the results demonstrate the robustness of our method, and show that
it yields better performance than the state-of-the-art techniques in most
cases.
Related papers
- Shape Completion in the Dark: Completing Vertebrae Morphology from 3D Ultrasound [34.25838262585591]
We introduce a point-cloud-based probabilistic DL method to complete occluded anatomical structures through 3D shape completion.
We generate synthetic 3D representations of partially occluded spinal views by mimicking US physics and accounting for inherent artifacts.
arXiv Detail & Related papers (2024-04-11T12:00:13Z) - Unsupervised correspondence with combined geometric learning and imaging
for radiotherapy applications [0.0]
The aim of this study was to develop a model to accurately identify corresponding points between organ segmentations of different patients for radiotherapy applications.
A model for simultaneous correspondence and estimation in 3D shapes was trained with head and neck organ segmentations from planning CT scans.
We then extended the original model to incorporate imaging information using two approaches.
arXiv Detail & Related papers (2023-09-25T16:29:18Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
We propose a new modeling method for human pose deformations and design an accompanying diffusion-based motion prior.
Inspired by the field of non-rigid structure-from-motion, we divide the task of reconstructing 3D human skeletons in motion into the estimation of a 3D reference skeleton.
A mixed spatial-temporal NRSfMformer is used to simultaneously estimate the 3D reference skeleton and the skeleton deformation of each frame from 2D observations sequence.
arXiv Detail & Related papers (2023-08-18T16:41:57Z) - Advancing Wound Filling Extraction on 3D Faces: Auto-Segmentation and
Wound Face Regeneration Approach [0.0]
We propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.
Based on the segmentation model, we propose an improved approach for extracting 3D facial wound fillers.
Our method achieved a remarkable accuracy of 0.9999986% on the test suite, surpassing the performance of the previous method.
arXiv Detail & Related papers (2023-07-04T17:46:02Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Simulating Realistic MRI variations to Improve Deep Learning model and
visual explanations using GradCAM [0.0]
We use a modified HighRes3DNet model for solving brain MRI volumetric landmark detection problem.
Grad-CAM produces a coarse localization map highlighting the regions the model is focusing.
arXiv Detail & Related papers (2021-11-01T11:14:23Z) - A Self-Supervised Deep Framework for Reference Bony Shape Estimation in
Orthognathic Surgical Planning [55.30223654196882]
A virtual orthognathic surgical planning involves simulating surgical corrections of jaw deformities on 3D facial bony shape models.
A reference facial bony shape model representing normal anatomies can provide an objective guidance to improve planning accuracy.
We propose a self-supervised deep framework to automatically estimate reference facial bony shape models.
arXiv Detail & Related papers (2021-09-11T05:24:40Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
Recent works succeed in regression-based methods which estimate parametric models directly through a deep neural network supervised by 3D ground truth.
In this paper, we introduce body segmentation as critical supervision.
To improve the reconstruction with part segmentation, we propose a part-level differentiable part that enables part-based models to be supervised by part segmentation.
arXiv Detail & Related papers (2020-03-24T14:25:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.