Beyond Features: How Dataset Design Influences Multi-Agent Trajectory Prediction Performance
- URL: http://arxiv.org/abs/2507.05098v1
- Date: Mon, 07 Jul 2025 15:18:51 GMT
- Title: Beyond Features: How Dataset Design Influences Multi-Agent Trajectory Prediction Performance
- Authors: Tobias Demmler, Jakob Häringer, Andreas Tamke, Thao Dang, Alexander Hegai, Lars Mikelsons,
- Abstract summary: This work examines how feature selection, cross-dataset transfer, and geographic diversity influence trajectory prediction accuracy in multi-agent settings.<n>We evaluate a state-of-the-art model using our novel L4 Motion Forecasting dataset based on our own data recordings in Germany and the US.
- Score: 37.850085364753845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate trajectory prediction is critical for safe autonomous navigation, yet the impact of dataset design on model performance remains understudied. This work systematically examines how feature selection, cross-dataset transfer, and geographic diversity influence trajectory prediction accuracy in multi-agent settings. We evaluate a state-of-the-art model using our novel L4 Motion Forecasting dataset based on our own data recordings in Germany and the US. This includes enhanced map and agent features. We compare our dataset to the US-centric Argoverse 2 benchmark. First, we find that incorporating supplementary map and agent features unique to our dataset, yields no measurable improvement over baseline features, demonstrating that modern architectures do not need extensive feature sets for optimal performance. The limited features of public datasets are sufficient to capture convoluted interactions without added complexity. Second, we perform cross-dataset experiments to evaluate how effective domain knowledge can be transferred between datasets. Third, we group our dataset by country and check the knowledge transfer between different driving cultures.
Related papers
- Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
We introduce UniTraj, a comprehensive framework that unifies various datasets, models, and evaluation criteria.
We conduct extensive experiments and find that model performance significantly drops when transferred to other datasets.
We provide insights into dataset characteristics to explain these findings.
arXiv Detail & Related papers (2024-03-22T10:36:50Z) - Comparing Importance Sampling Based Methods for Mitigating the Effect of
Class Imbalance [0.0]
We compare three techniques that derive from importance sampling: loss reweighting, undersampling, and oversampling.
We find that up-weighting the loss for and undersampling has a negigible effect on the performance on underrepresented classes.
Our findings also indicate that there may exist some redundancy in data in the Planet dataset.
arXiv Detail & Related papers (2024-02-28T22:52:27Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Improving Transferability for Cross-domain Trajectory Prediction via
Neural Stochastic Differential Equation [41.09061877498741]
discrepancies exist among datasets due to external factors and data acquisition strategies.
The proficient performance of models trained on large-scale datasets has limited transferability on other small-size datasets.
We propose a method based on continuous and utilization of Neural Differential Equations (NSDE) for alleviating discrepancies.
The effectiveness of our method is validated against state-of-the-art trajectory prediction models on the popular benchmark datasets: nuScenes, Argoverse, Lyft, INTERACTION, and Open Motion dataset.
arXiv Detail & Related papers (2023-12-26T06:50:29Z) - A State-Vector Framework for Dataset Effects [20.255403795164856]
We propose a state-vector framework to enable rigorous studies in this direction.
This framework uses idealized probing test results as the bases of a vector space.
We show that the significant effects of some commonly-used language understanding datasets are characteristic and are concentrated on a few linguistic dimensions.
arXiv Detail & Related papers (2023-10-17T03:05:06Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
A new design (named Detection Hub) is dataset-aware and category-aligned.
It mitigates the dataset inconsistency and provides coherent guidance for the detector to learn across multiple datasets.
The categories across datasets are semantically aligned into a unified space by replacing one-hot category representations with word embedding.
arXiv Detail & Related papers (2022-06-07T17:59:44Z) - The Stanford Drone Dataset is More Complex than We Think: An Analysis of
Key Characteristics [2.064612766965483]
We discuss the characteristics of the Stanford Drone dataset (SDD)
We demonstrate how this insufficiency reduces the information available to users and can impact performance.
Our intention is to increase the performance and methods applied to this dataset going forward, while also clearly detailing less obvious features of the dataset for new users.
arXiv Detail & Related papers (2022-03-22T13:58:14Z) - Dataset Cartography: Mapping and Diagnosing Datasets with Training
Dynamics [118.75207687144817]
We introduce Data Maps, a model-based tool to characterize and diagnose datasets.
We leverage a largely ignored source of information: the behavior of the model on individual instances during training.
Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
arXiv Detail & Related papers (2020-09-22T20:19:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.