VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
- URL: http://arxiv.org/abs/2507.05116v3
- Date: Tue, 05 Aug 2025 20:02:26 GMT
- Title: VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
- Authors: Juyi Lin, Amir Taherin, Arash Akbari, Arman Akbari, Lei Lu, Guangyu Chen, Taskin Padir, Xiaomeng Yang, Weiwei Chen, Yiqian Li, Xue Lin, David Kaeli, Pu Zhao, Yanzhi Wang,
- Abstract summary: Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language.<n>Current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss.<n>We develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost.
- Score: 40.837048280287206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
Related papers
- EdgeVLA: Efficient Vision-Language-Action Models [0.4005096060512278]
This paper introduces Edge VLA, a novel approach designed to significantly enhance the inference speed of Vision-Language-Action (VLA) models.<n>We achieve this through two key innovations: 1) Eliminating the autoregressive requirement for end-effector position prediction, leading to a 7x speedup in inference, and 2) Leveraging the efficiency of Small Language Models (SLMs)<n>Our early results demonstrate that EVLA achieves comparable training characteristics to OpenVLA while offering substantial gains in inference speed and memory efficiency.
arXiv Detail & Related papers (2025-07-18T16:15:09Z) - Unified Vision-Language-Action Model [86.68814779303429]
We present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences.<n>Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge.<n>We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
arXiv Detail & Related papers (2025-06-24T17:59:57Z) - SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [69.54069477520534]
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities.<n>Their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation.<n>We propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens.
arXiv Detail & Related papers (2025-06-15T05:04:17Z) - Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models [30.7855782696894]
Vision-Language-Action (VLA) models have emerged as a powerful paradigm for general-purpose robot control through natural language instructions.<n>We propose FlashVLA, the first training-free and plug-and-play acceleration framework that enables action reuse in VLA models.
arXiv Detail & Related papers (2025-05-27T13:47:18Z) - Top-Down Compression: Revisit Efficient Vision Token Projection for Visual Instruction Tuning [70.57180215148125]
Visual instruction tuning aims to enable large language models to comprehend the visual world.<n>Existing methods often grapple with the intractable trade-off between accuracy and efficiency.<n>We present LLaVA-Meteor, a novel approach that strategically compresses visual tokens without compromising core information.
arXiv Detail & Related papers (2025-05-17T10:22:29Z) - CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models [89.44024245194315]
We introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs)<n>We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens.<n>Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks.
arXiv Detail & Related papers (2025-03-27T22:23:04Z) - Accelerating Vision-Language-Action Model Integrated with Action Chunking via Parallel Decoding [24.1236728596359]
Vision-Language-Action (VLA) models demonstrate remarkable potential for generalizable robotic manipulation.<n>We propose PD-VLA, the first parallel decoding framework for VLA models integrated with action chunking.<n>Our framework reformulates autoregressive decoding as a nonlinear system solved by parallel fixed-point iterations.
arXiv Detail & Related papers (2025-03-04T06:12:08Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)<n>Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.<n>In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation [100.25567121604382]
Vision-Language-Action (VLA) models have improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios.<n>We present a new advanced VLA architecture derived from Vision-Language-Models (VLM)<n>We show that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds.
arXiv Detail & Related papers (2024-11-29T12:06:03Z) - VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness [56.87603097348203]
VeCAF uses labels and natural language annotations to perform parametric data selection for PVM finetuning.
VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence.
On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning.
arXiv Detail & Related papers (2024-01-15T17:28:37Z) - Generalizing Interactive Backpropagating Refinement for Dense Prediction [0.0]
We introduce a set of G-BRS layers that enable both global and localized refinement for a range of dense prediction tasks.
Our method can successfully generalize and significantly improve performance of existing pretrained state-of-the-art models with only a few clicks.
arXiv Detail & Related papers (2021-12-21T03:52:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.