Infrastructuring Contestability: A Framework for Community-Defined AI Value Pluralism
- URL: http://arxiv.org/abs/2507.05187v1
- Date: Mon, 07 Jul 2025 16:45:50 GMT
- Title: Infrastructuring Contestability: A Framework for Community-Defined AI Value Pluralism
- Authors: Andreas Mayer,
- Abstract summary: The proliferation of AI-driven systems presents a challenge to Human-Computer Interaction and Computer-Supported Cooperative Work.<n>Current approaches to value alignment, which rely on centralized, top-down definitions, lack the mechanisms for meaningful contestability.<n>This paper introduces Community-Defined AI Value Pluralism, a socio-technical framework that addresses this gap.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The proliferation of AI-driven systems presents a fundamental challenge to Human-Computer Interaction (HCI) and Computer-Supported Cooperative Work (CSCW), often diminishing user agency and failing to account for value pluralism. Current approaches to value alignment, which rely on centralized, top-down definitions, lack the mechanisms for meaningful contestability. This leaves users and communities unable to challenge or shape the values embedded in the systems that govern their digital lives, creating a crisis of legitimacy and trust. This paper introduces Community-Defined AI Value Pluralism (CDAVP), a socio-technical framework that addresses this gap. It reframes the design problem from achieving a single aligned state to infrastructuring a dynamic ecosystem for value deliberation and application. At its core, CDAVP enables diverse, self-organizing communities to define and maintain explicit value profiles - rich, machine-readable representations that can encompass not only preferences but also community-specific rights and duties. These profiles are then contextually activated by the end-user, who retains ultimate control (agency) over which values guide the AI's behavior. AI applications, in turn, are designed to transparently interpret these profiles and moderate conflicts, adhering to a set of non-negotiable, democratically-legitimated meta-rules. The designer's role shifts from crafting static interfaces to becoming an architect of participatory ecosystems. We argue that infrastructuring for pluralism is a necessary pathway toward achieving robust algorithmic accountability and genuinely contestable, human-centric AI.
Related papers
- Resource Rational Contractualism Should Guide AI Alignment [69.07915246220985]
Contractualist alignment proposes grounding decisions in agreements that diverse stakeholders would endorse.<n>We propose Resource-Rationalism: a framework where AI systems approximate the agreements rational parties would form.<n>An RRC-aligned agent would not only operate efficiently, but also be equipped to dynamically adapt to and interpret the ever-changing human social world.
arXiv Detail & Related papers (2025-06-20T18:57:13Z) - Ethical AI: Towards Defining a Collective Evaluation Framework [0.3413711585591077]
Artificial Intelligence (AI) is transforming sectors such as healthcare, finance, and autonomous systems.<n>Yet its rapid integration raises urgent ethical concerns related to data ownership, privacy, and systemic bias.<n>This article proposes a modular ethical assessment framework built on ontological blocks of meaning-discrete, interpretable units.
arXiv Detail & Related papers (2025-05-30T21:10:47Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
This paper introduces AILuminate v1.0, the first comprehensive industry-standard benchmark for assessing AI-product risk and reliability.<n>The benchmark evaluates an AI system's resistance to prompts designed to elicit dangerous, illegal, or undesirable behavior in 12 hazard categories.
arXiv Detail & Related papers (2025-02-19T05:58:52Z) - Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms [8.177915265718703]
We argue that AI agents should be empowered to adjust their objectives dynamically.<n>We call for a shift toward the emergent, self-organizing, and context-aware nature of these multi-agentic AI systems.
arXiv Detail & Related papers (2025-02-05T22:20:15Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
Key requirements for trustworthy AI can be translated into design choices for the components of empirical risk minimization.
We hope to provide actionable guidance for building AI systems that meet emerging standards for trustworthiness of AI.
arXiv Detail & Related papers (2024-10-25T07:53:32Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - AI Alignment: A Comprehensive Survey [69.61425542486275]
AI alignment aims to make AI systems behave in line with human intentions and values.<n>We identify four principles as the key objectives of AI alignment: Robustness, Interpretability, Controllability, and Ethicality.<n>We decompose current alignment research into two key components: forward alignment and backward alignment.
arXiv Detail & Related papers (2023-10-30T15:52:15Z) - Value Kaleidoscope: Engaging AI with Pluralistic Human Values, Rights, and Duties [68.66719970507273]
Value pluralism is the view that multiple correct values may be held in tension with one another.
As statistical learners, AI systems fit to averages by default, washing out potentially irreducible value conflicts.
We introduce ValuePrism, a large-scale dataset of 218k values, rights, and duties connected to 31k human-written situations.
arXiv Detail & Related papers (2023-09-02T01:24:59Z) - Human Values in Multiagent Systems [3.5027291542274357]
This paper presents a formal representation of values, grounded in the social sciences.
We use this formal representation to articulate the key challenges for achieving value-aligned behaviour in multiagent systems.
arXiv Detail & Related papers (2023-05-04T11:23:59Z) - Bridging the Global Divide in AI Regulation: A Proposal for a Contextual, Coherent, and Commensurable Framework [0.9622882291833615]
This paper proposes an alternative contextual, coherent, and commensurable (3C) framework for regulating artificial intelligence (AI)
To ensure contextuality, the framework bifurcates the AI life cycle into two phases: learning and deployment for specific tasks, instead of defining foundation or general-purpose models.
To ensure commensurability, the framework promotes the adoption of international standards for measuring and mitigating risks.
arXiv Detail & Related papers (2023-03-20T15:23:40Z) - Tensions Between the Proxies of Human Values in AI [20.303537771118048]
We argue that the AI community needs to consider all the consequences of choosing certain formulations of these pillars.
We point towards sociotechnical research for frameworks for the latter, but push for broader efforts into implementing these in practice.
arXiv Detail & Related papers (2022-12-14T21:13:48Z) - The Challenge of Value Alignment: from Fairer Algorithms to AI Safety [2.28438857884398]
This paper addresses the question of how to align AI systems with human values.
It situates it within a wider body of thought regarding technology and value.
arXiv Detail & Related papers (2021-01-15T11:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.