Towards Generalist Biomedical AI
- URL: http://arxiv.org/abs/2307.14334v1
- Date: Wed, 26 Jul 2023 17:52:22 GMT
- Title: Towards Generalist Biomedical AI
- Authors: Tao Tu, Shekoofeh Azizi, Danny Driess, Mike Schaekermann, Mohamed
Amin, Pi-Chuan Chang, Andrew Carroll, Chuck Lau, Ryutaro Tanno, Ira Ktena,
Basil Mustafa, Aakanksha Chowdhery, Yun Liu, Simon Kornblith, David Fleet,
Philip Mansfield, Sushant Prakash, Renee Wong, Sunny Virmani, Christopher
Semturs, S Sara Mahdavi, Bradley Green, Ewa Dominowska, Blaise Aguera y
Arcas, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Karan
Singhal, Pete Florence, Alan Karthikesalingam, Vivek Natarajan
- Abstract summary: We introduce Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system.
Med-PaLM M is a large multimodal generative model that flexibly encodes and interprets biomedical data.
We conduct a radiologist evaluation of model-generated (and human) chest X-ray reports and observe encouraging performance across model scales.
- Score: 28.68106423175678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medicine is inherently multimodal, with rich data modalities spanning text,
imaging, genomics, and more. Generalist biomedical artificial intelligence (AI)
systems that flexibly encode, integrate, and interpret this data at scale can
potentially enable impactful applications ranging from scientific discovery to
care delivery. To enable the development of these models, we first curate
MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses
14 diverse tasks such as medical question answering, mammography and
dermatology image interpretation, radiology report generation and
summarization, and genomic variant calling. We then introduce Med-PaLM
Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI
system. Med-PaLM M is a large multimodal generative model that flexibly encodes
and interprets biomedical data including clinical language, imaging, and
genomics with the same set of model weights. Med-PaLM M reaches performance
competitive with or exceeding the state of the art on all MultiMedBench tasks,
often surpassing specialist models by a wide margin. We also report examples of
zero-shot generalization to novel medical concepts and tasks, positive transfer
learning across tasks, and emergent zero-shot medical reasoning. To further
probe the capabilities and limitations of Med-PaLM M, we conduct a radiologist
evaluation of model-generated (and human) chest X-ray reports and observe
encouraging performance across model scales. In a side-by-side ranking on 246
retrospective chest X-rays, clinicians express a pairwise preference for
Med-PaLM M reports over those produced by radiologists in up to 40.50% of
cases, suggesting potential clinical utility. While considerable work is needed
to validate these models in real-world use cases, our results represent a
milestone towards the development of generalist biomedical AI systems.
Related papers
- A Survey of Medical Vision-and-Language Applications and Their Techniques [48.268198631277315]
Medical vision-and-language models (MVLMs) have attracted substantial interest due to their capability to offer a natural language interface for interpreting complex medical data.
Here, we provide a comprehensive overview of MVLMs and the various medical tasks to which they have been applied.
We also examine the datasets used for these tasks and compare the performance of different models based on standardized evaluation metrics.
arXiv Detail & Related papers (2024-11-19T03:27:05Z) - MedViLaM: A multimodal large language model with advanced generalizability and explainability for medical data understanding and generation [40.9095393430871]
We introduce MedViLaM, a unified vision-language model towards a generalist model for medical data.
MedViLaM can flexibly encode and interpret various forms of medical data, including clinical language and imaging.
We present instances of zero-shot generalization to new medical concepts and tasks, effective transfer learning across different tasks, and the emergence of zero-shot medical reasoning.
arXiv Detail & Related papers (2024-09-29T12:23:10Z) - The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution.
Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models.
This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications.
arXiv Detail & Related papers (2024-09-03T00:48:50Z) - MultiMed: Massively Multimodal and Multitask Medical Understanding [41.160488390597905]
MultiMed is a benchmark designed to evaluate and enable large-scale learning across a wide spectrum of medical modalities and tasks.
It consists of 2.56 million samples across ten medical modalities such as medical reports, pathology, genomics, and protein data.
Using MultiMed, we conduct comprehensive experiments benchmarking state-of-the-art unimodal, multimodal, and multitask models.
arXiv Detail & Related papers (2024-08-22T18:41:36Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - MedM2G: Unifying Medical Multi-Modal Generation via Cross-Guided
Diffusion with Visual Invariant [15.30998544228763]
MedM2G is a medical generative model that unifies medical generation tasks of text-to-image, image-to-text, and unified generation of medical modalities.
It performs 5 medical generation tasks across 10 datasets, consistently outperforming various state-of-the-art works.
arXiv Detail & Related papers (2024-03-07T07:39:00Z) - LLaVA-Med: Training a Large Language-and-Vision Assistant for
Biomedicine in One Day [85.19963303642427]
We propose a cost-efficient approach for training a vision-language conversational assistant that can answer open-ended research questions of biomedical images.
The model first learns to align biomedical vocabulary using the figure-caption pairs as is, then learns to master open-ended conversational semantics.
This enables us to train a Large Language and Vision Assistant for BioMedicine in less than 15 hours (with eight A100s)
arXiv Detail & Related papers (2023-06-01T16:50:07Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z) - BiomedCLIP: a multimodal biomedical foundation model pretrained from
fifteen million scientific image-text pairs [48.376109878173956]
We present PMC-15M, a novel dataset that is two orders of magnitude larger than existing biomedical multimodal datasets.
PMC-15M contains 15 million biomedical image-text pairs collected from 4.4 million scientific articles.
Based on PMC-15M, we have pretrained BiomedCLIP, a multimodal foundation model, with domain-specific adaptations tailored to biomedical vision-language processing.
arXiv Detail & Related papers (2023-03-02T02:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.