論文の概要: Hunting in the Dark: Metrics for Early Stage Traffic Discovery
- arxiv url: http://arxiv.org/abs/2507.05213v1
- Date: Mon, 07 Jul 2025 17:23:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.535506
- Title: Hunting in the Dark: Metrics for Early Stage Traffic Discovery
- Title(参考訳): 暗闇で狩り: 初期段階の交通発見のためのメトリクス
- Authors: Max Gao, Michael Collins, Ricky Mok, kc Claffy,
- Abstract要約: 本研究では,暗号鍵マルウェアパッケージであるCrackonoshの検出について,その挙動を識別するためのさまざまな指標を用いて検討した。
発見可能性の指標を用いて,マルウェアの数が減少するにつれて,防御者がCrackonoshトラフィックを測定する能力をモデル化する。
異なる暗黒空間サイズがマルウェアを追跡する能力の両方にどう影響するかを実証するが、攻撃者のミスを悪用して突発的な行動を可能にする。
- 参考スコア(独自算出の注目度): 2.069390182721129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Threat hunting is an operational security process where an expert analyzes traffic, applying knowledge and lightweight tools on unlabeled data in order to identify and classify previously unknown phenomena. In this paper, we examine threat hunting metrics and practice by studying the detection of Crackonosh, a cryptojacking malware package, has on various metrics for identifying its behavior. Using a metric for discoverability, we model the ability of defenders to measure Crackonosh traffic as the malware population decreases, evaluate the strength of various detection methods, and demonstrate how different darkspace sizes affect both the ability to track the malware, but enable emergent behaviors by exploiting attacker mistakes.
- Abstract(参考訳): 脅威ハンティング(英: Threat Hunt)とは、専門家がトラフィックを分析し、未ラベルのデータに知識と軽量なツールを適用して、これまで未知の現象を識別し分類する、運用上のセキュリティプロセスである。
本稿では,暗号鍵マルウェアパッケージであるCrackonoshの検出を調査し,脅威追跡の指標と実践について検討する。
発見可能性の指標を用いて,マルウェア集団が減少するにつれて,防御者がCrackonoshトラフィックを測定する能力をモデル化し,さまざまな検出方法の強度を評価し,異なる暗黒空間サイズがマルウェアの追跡能力にどのように影響するかを示した。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Can you See me? On the Visibility of NOPs against Android Malware Detectors [1.2187048691454239]
本稿では,NOPや類似の非運用コードを見つけることの難しさを評価するための可視性指標を提案する。
われわれは、Androidマルウェア検出のための最先端のオプコードベースのディープラーニングシステム上で、我々の測定値を試した。
論文 参考訳(メタデータ) (2023-12-28T20:48:16Z) - Burning the Adversarial Bridges: Robust Windows Malware Detection
Against Binary-level Mutations [16.267773730329207]
そこで本研究では,バイナリレベルのブラックボックス攻撃マルウェアの実例の根本原因分析を行った。
我々は、ソフトウェア内の揮発性情報チャネルを強調し、攻撃面を排除するために3つのソフトウェア前処理手順を導入する。
新たなセクションインジェクション攻撃に対抗するために,グラフに基づくセクション依存情報抽出手法を提案する。
論文 参考訳(メタデータ) (2023-10-05T03:28:02Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Fact-Saboteurs: A Taxonomy of Evidence Manipulation Attacks against
Fact-Verification Systems [80.3811072650087]
証拠のクレームサレントスニペットを微調整し,多様かつクレームアラインな証拠を生成することが可能であることを示す。
この攻撃は、主張のポストホックな修正に対しても堅牢である。
これらの攻撃は、インスペクタブルとヒューマン・イン・ザ・ループの使用シナリオに有害な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2022-09-07T13:39:24Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - Can We Leverage Predictive Uncertainty to Detect Dataset Shift and
Adversarial Examples in Android Malware Detection? [20.96638126913256]
我々は6つのキャリブレーション法で4つのオフ・ザ・シェルフ検出器を変換することで、24個のAndroidマルウェア検出器を再設計し、構築する。
データ不均衡を扱う3つの指標を含む9つの指標で、不確実性を定量化します。
予測された逆例のラベルに関連する不確かさを定量化することは、オープンな問題である。
論文 参考訳(メタデータ) (2021-09-20T16:16:25Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。