QuEst: Enhancing Estimates of Quantile-Based Distributional Measures Using Model Predictions
- URL: http://arxiv.org/abs/2507.05220v1
- Date: Mon, 07 Jul 2025 17:33:18 GMT
- Title: QuEst: Enhancing Estimates of Quantile-Based Distributional Measures Using Model Predictions
- Authors: Zhun Deng, Thomas P Zollo, Benjamin Eyre, Amogh Inamdar, David Madras, Richard Zemel,
- Abstract summary: We present QuEst, a principled framework to merge observed and imputed data to deliver point estimates.<n> QuEst covers a range of measures, from tail risk (CVaR) to population segments such as quartiles, that are central to fields such as economics, sociology, education, medicine, and more.<n>We extend QuEst to multidimensional metrics, and introduce an additional optimization technique to further reduce variance in this and other hybrid estimators.
- Score: 12.851704083461616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning models grow increasingly competent, their predictions can supplement scarce or expensive data in various important domains. In support of this paradigm, algorithms have emerged to combine a small amount of high-fidelity observed data with a much larger set of imputed model outputs to estimate some quantity of interest. Yet current hybrid-inference tools target only means or single quantiles, limiting their applicability for many critical domains and use cases. We present QuEst, a principled framework to merge observed and imputed data to deliver point estimates and rigorous confidence intervals for a wide family of quantile-based distributional measures. QuEst covers a range of measures, from tail risk (CVaR) to population segments such as quartiles, that are central to fields such as economics, sociology, education, medicine, and more. We extend QuEst to multidimensional metrics, and introduce an additional optimization technique to further reduce variance in this and other hybrid estimators. We demonstrate the utility of our framework through experiments in economic modeling, opinion polling, and language model auto-evaluation.
Related papers
- Generative Distribution Prediction: A Unified Approach to Multimodal Learning [4.3108820946281945]
We introduce Generative Distribution Prediction (GDP) to enhance predictive performance across structured and unstructured modalities.<n>GDP is model-agnostic, compatible with any high-fidelity generative model, and supports transfer learning for domain adaptation.<n>We empirically validate GDP on four supervised learning tasks-tabular data prediction, question answering, image captioning, and adaptive quantile regression-demonstrating its versatility and effectiveness across diverse domains.
arXiv Detail & Related papers (2025-02-10T22:30:35Z) - A General Approach for Determining Applicability Domain of Machine Learning Models [1.8551396341435895]
Knowledge of the domain of applicability of a machine learning model is essential to ensuring accurate and reliable model predictions.<n>We develop a new and general approach of assessing model domain using kernel density estimation.<n>We show that chemical groups considered unrelated based on chemical knowledge exhibit significant dissimilarities by our measure.
arXiv Detail & Related papers (2024-05-28T15:41:16Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.
We find that MAUVE can quantify the gaps between the distributions of human-written text and those of modern neural language models.
We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics.
arXiv Detail & Related papers (2022-12-30T07:37:40Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Divergence Frontiers for Generative Models: Sample Complexity,
Quantization Level, and Frontier Integral [58.434753643798224]
Divergence frontiers have been proposed as an evaluation framework for generative models.
We establish non-asymptotic bounds on the sample complexity of the plug-in estimator of divergence frontiers.
We also augment the divergence frontier framework by investigating the statistical performance of smoothed distribution estimators.
arXiv Detail & Related papers (2021-06-15T06:26:25Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions.
We investigate methods for aggregating any number of conditional quantile models.
All of the models we consider in this paper can be fit using modern deep learning toolkits.
arXiv Detail & Related papers (2021-02-26T23:21:16Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Transfer Learning with Multi-source Data: High-dimensional Inference for
Group Distributionally Robust Models [0.0]
Learning with multi-source data helps improve model generalizability and is integral to many important statistical problems.
This paper considers multiple high-dimensional regression models for the multi-source data.
We devise a novel it DenseNet sampling method to construct valid confidence intervals for the high-dimensional maximin effect.
arXiv Detail & Related papers (2020-11-15T16:15:10Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.