論文の概要: When Chain of Thought is Necessary, Language Models Struggle to Evade Monitors
- arxiv url: http://arxiv.org/abs/2507.05246v1
- Date: Mon, 07 Jul 2025 17:54:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.556229
- Title: When Chain of Thought is Necessary, Language Models Struggle to Evade Monitors
- Title(参考訳): 思考の連鎖が必須であるとき、言語モデルがモニターを無効にする
- Authors: Scott Emmons, Erik Jenner, David K. Elson, Rif A. Saurous, Senthooran Rajamanoharan, Heng Chen, Irhum Shafkat, Rohin Shah,
- Abstract要約: CoT(Chain-of- Thought)モニタリングは、AIの安全性を擁護するものだ。
この「不信」に関する最近の研究は、その信頼性に疑問を呈している。
重要な特性は忠実さではなく監視性である、と我々は主張する。
- 参考スコア(独自算出の注目度): 10.705880888253501
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While chain-of-thought (CoT) monitoring is an appealing AI safety defense, recent work on "unfaithfulness" has cast doubt on its reliability. These findings highlight an important failure mode, particularly when CoT acts as a post-hoc rationalization in applications like auditing for bias. However, for the distinct problem of runtime monitoring to prevent severe harm, we argue the key property is not faithfulness but monitorability. To this end, we introduce a conceptual framework distinguishing CoT-as-rationalization from CoT-as-computation. We expect that certain classes of severe harm will require complex, multi-step reasoning that necessitates CoT-as-computation. Replicating the experimental setups of prior work, we increase the difficulty of the bad behavior to enforce this necessity condition; this forces the model to expose its reasoning, making it monitorable. We then present methodology guidelines to stress-test CoT monitoring against deliberate evasion. Applying these guidelines, we find that models can learn to obscure their intentions, but only when given significant help, such as detailed human-written strategies or iterative optimization against the monitor. We conclude that, while not infallible, CoT monitoring offers a substantial layer of defense that requires active protection and continued stress-testing.
- Abstract(参考訳): チェーン・オブ・シンクレット(CoT)モニタリングはAIの安全性を擁護するものの、最近の"不信感"に関する研究はその信頼性に疑問を呈している。
これらの発見は、特にCoTがバイアスの監査のようなアプリケーションにおいて、ポストホックな合理化として機能する場合において、重要な障害モードを浮き彫りにしている。
しかし、重傷を負うのを防ぐために、実行時の監視が問題となるため、重要な特性は忠実さではなく監視性である、と我々は主張する。
そこで本研究では,CoT-as-rationalizationとCoT-as-computationを区別する概念的枠組みを提案する。
深刻な危害のあるクラスには、CoT-as-computationを必要とする複雑で多段階の推論が必要であると期待する。
先行作業の実験的なセットアップを再現することで、この必要条件を強制する悪い振る舞いの難しさを増し、モデルに推論を公開させ、監視できるようにします。
次に,意識的回避に対するストレステストCoTモニタリングのための方法論ガイドラインを提案する。
これらのガイドラインを適用することで、モデルは意図を曖昧にすることができるが、詳細な人手による戦略やモニターに対する反復的な最適化など、重要な支援を受けた場合にのみ、モデルが学習できることが分かる。
結論として,CoTモニタリングは積極的な保護と継続的なストレステストを必要とする,実質的な防御層を提供する。
関連論文リスト
- CoT Red-Handed: Stress Testing Chain-of-Thought Monitoring [3.6284577335311563]
CoT(Chain-of-Thought)モニタリングは、アクションのみの監視がサボタージュを確実に識別できないシナリオにおいて、最大27ポイントの検出を改善する。
CoTトレースはまた、モニターを欺く誤解を招く合理化も含み、より明白なサボタージュケースのパフォーマンスを低下させる。
このハイブリッドモニターは、テストされたすべてのモデルとタスクにわたってCoTとアクションオンリーのモニターを一貫して上回り、微妙な詐欺シナリオに対するアクションオンリーのモニタリングよりも4倍高い速度で検出する。
論文 参考訳(メタデータ) (2025-05-29T15:47:36Z) - Reasoning Models Don't Always Say What They Think [48.05987314492555]
CoT(Chain-of-Thought)は、モデルの意図と推論プロセスの監視を可能にする。
提案する6つの推論ヒントにまたがる最先端推論モデルのCoT忠実度を評価した。
論文 参考訳(メタデータ) (2025-05-08T16:51:43Z) - Monitoring Reasoning Models for Misbehavior and the Risks of Promoting Obfuscation [56.102976602468615]
エージェントコーディング環境における報酬ハッキングのために,OpenAI o3-miniのようなフロンティア推論モデルを監視することができることを示す。
最適化が多すぎると、エージェントは難解な報酬のハッキングを学び、その意図を思考の連鎖の中に隠してしまう。
論文 参考訳(メタデータ) (2025-03-14T23:50:34Z) - To Think or Not to Think: Exploring the Unthinking Vulnerability in Large Reasoning Models [56.19026073319406]
大規模推論モデル (LRM) は、最終的な答えを生成する前に明確な推論トレースを生成することで複雑なタスクを解決するように設計されている。
LRM(Unthinking)と呼ばれる重要な脆弱性を明らかにし、特別なトークンを操作することで思考プロセスを回避できます。
本稿では,この脆弱性を悪意と有益の両方の観点から検討する。
論文 参考訳(メタデータ) (2025-02-16T10:45:56Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
国家の異なる部分には、保存されていない共同設立者が引き起こす相関関係が存在しない。
このような役に立たないあるいは有害な相関を学習するモデルは、テストケースの共同創設者がトレーニングケースから逸脱したときに破滅的に失敗する可能性がある。
したがって、単純かつ非構造的な不確実性集合を仮定する既存の頑健なアルゴリズムは、この問題に対処するには不十分である。
論文 参考訳(メタデータ) (2023-07-15T23:53:37Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
入力のノルム有界対向摂動に対する強化学習の証明可能な堅牢性について検討する。
我々は、スムーズなポリシーによって得られる全報酬が、入力の摂動のノルムバウンドな逆数の下で一定の閾値以下に収まらないことを保証した証明書を生成する。
論文 参考訳(メタデータ) (2021-06-21T21:42:08Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。