論文の概要: FuzzFeed: An Automatic Approach to Weakest Precondition Generation using LLMs and Fuzzing
- arxiv url: http://arxiv.org/abs/2507.05272v1
- Date: Thu, 03 Jul 2025 15:14:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.172852
- Title: FuzzFeed: An Automatic Approach to Weakest Precondition Generation using LLMs and Fuzzing
- Title(参考訳): FuzzFeed: LLM と Fuzzing を用いたWeakest Precondition の自動生成手法
- Authors: Daragh King, Vasileios Koutavas, Laura Kovacs,
- Abstract要約: 本稿では,Large Language Models (LLMs) と Fuzz Testing を組み合わせて,弱い事前条件(WPs)を生成することを提案する。
Fuzzing Guidance (FG) は、プログラムの実行フィードバックを用いて、LCMを正しいWPに誘導する手段として機能する。
提案手法の有効性を,Javaにおける決定論的配列プログラムの包括的なベンチマークセットに示す。
- 参考スコア(独自算出の注目度): 0.43012765978447554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The weakest precondition (WP) of a program describes the largest set of initial states from which all terminating executions of the program satisfy a given postcondition. The generation of WPs is an important task with practical applications in areas ranging from verification to run-time error checking. This paper proposes the combination of Large Language Models (LLMs) and fuzz testing for generating WPs. In pursuit of this goal, we introduce Fuzzing Guidance (FG); FG acts as a means of directing LLMs towards correct WPs using program execution feedback. FG utilises fuzz testing for approximately checking the validity and weakness of candidate WPs, this information is then fed back to the LLM as a means of context refinement. We demonstrate the effectiveness of our approach on a comprehensive benchmark set of deterministic array programs in Java. Our experiments indicate that LLMs are capable of producing viable candidate WPs, and that this ability can be practically enhanced through FG.
- Abstract(参考訳): プログラムの最も弱い事前条件(WP)は、プログラムの終了する実行が与えられた後条件を満たす最も大きな初期状態の集合を記述する。
WPの生成は、検証から実行時のエラーチェックに至るまで、実践的な応用において重要なタスクである。
本稿では,Large Language Models (LLM) とファジテストを組み合わせた WP 生成手法を提案する。
この目的を追求するために、FGはプログラム実行フィードバックを用いて、LCMを正しいWPに向ける手段として機能するファジングガイダンス(FG)を導入する。
FGはファズテストを利用して、候補WPの妥当性と弱点を概ね確認し、この情報を文脈改善の手段としてLLMに送付する。
提案手法の有効性を,Javaにおける決定論的配列プログラムの包括的なベンチマークセットに示す。
実験の結果, LLMは有効候補WPを生成でき, この能力はFGにより実質的に向上できることがわかった。
関連論文リスト
- FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
FVEvalは,形式的検証(FV)に関わるタスクにおいて,大規模言語モデル(LLM)のパフォーマンスを特徴付ける最初の総合ベンチマークである。
ベンチマークは3つのサブタスクで構成され、異なるレベルでLLM能力を測定する。
本稿では,FVに整合した合成例を生成するための,専門家による検証手法と手法のコレクションについて述べる。
論文 参考訳(メタデータ) (2024-10-15T21:48:57Z) - LLM4VV: Exploring LLM-as-a-Judge for Validation and Verification Testsuites [6.796136787585992]
大規模言語モデル(LLM)は進化し、ソフトウェア開発のランドスケープに大きな革命をもたらしています。
本稿では,ディレクティブプログラミングモデルのコンパイラ実装を評価するために使用されるテストの判定について考察する。
論文 参考訳(メタデータ) (2024-08-21T15:54:17Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - A Quantitative and Qualitative Evaluation of LLM-Based Explainable Fault Localization [12.80414941523501]
AutoFLは、提案された障害位置とともに、バグの説明を生成する。
JavaとPythonの798の現実世界のバグの実験では、AutoFLはメソッドレベルのcc@1を、ベースライン上で最大233.3%改善した。
論文 参考訳(メタデータ) (2023-08-10T10:26:55Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z) - Prompt Tuning for Discriminative Pre-trained Language Models [96.04765512463415]
最近の研究は、自然言語処理(NLP)タスクに事前訓練言語モデル(PLM)を刺激する際の迅速なチューニングの有望な結果を示している。
ELECTRAのような差別的なPLMが、いかに効果的に迅速なチューニングが可能かは、まだ不明である。
DPTは,NLPタスクを識別言語モデリング問題に書き換える,識別型PLMの最初のプロンプトチューニングフレームワークである。
論文 参考訳(メタデータ) (2022-05-23T10:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。