High Order Collaboration-Oriented Federated Graph Neural Network for Accurate QoS Prediction
- URL: http://arxiv.org/abs/2507.05308v1
- Date: Mon, 07 Jul 2025 09:28:49 GMT
- Title: High Order Collaboration-Oriented Federated Graph Neural Network for Accurate QoS Prediction
- Authors: Zehuan Chen, Xiangwei Lai,
- Abstract summary: Federated Graph Neural Networks (FGNNs) can perform data prediction as well as maintaining user privacy.<n>Existing FGNN-based predictors commonly implement on-device training on scattered explicit user-service graphs.<n>This study proposes a high order collaboration-oriented graph neural network (HCFGNN) to obtain accurate prediction with privacy preservation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting Quality of Service (QoS) data crucial for cloud service selection, where user privacy is a critical concern. Federated Graph Neural Networks (FGNNs) can perform QoS data prediction as well as maintaining user privacy. However, existing FGNN-based QoS predictors commonly implement on-device training on scattered explicit user-service graphs, thereby failing to utilize the implicit user-user interactions. To address this issue, this study proposes a high order collaboration-oriented federated graph neural network (HC-FGNN) to obtain accurate QoS prediction with privacy preservation. Concretely, it magnifies the explicit user-service graphs following the principle of attention mechanism to obtain the high order collaboration, which reflects the implicit user-user interactions. Moreover, it utilizes a lightweight-based message aggregation way to improve the computational efficiency. The extensive experiments on two QoS datasets from real application indicate that the proposed HC-FGNN possesses the advantages of high prediction accurate and privacy protection.
Related papers
- Efficient and Privacy-Preserved Link Prediction via Condensed Graphs [49.898152180805454]
We introduce HyDROtextsuperscript+, a graph condensation method guided by algebraic Jaccard similarity.<n>Our method achieves nearly 20* faster training and reduces storage requirements by 452*, compared to link prediction on the original networks.
arXiv Detail & Related papers (2025-03-15T14:54:04Z) - Anomaly Resilient Temporal QoS Prediction using Hypergraph Convoluted Transformer Network [0.47248250311484113]
Quality-of-Service (QoS) prediction is a critical task in the service lifecycle.
Traditional methods often encounter data sparsity and cold-start issues.
We introduce a real-time, trust-aware framework for temporal prediction.
arXiv Detail & Related papers (2024-10-23T11:01:39Z) - GACL: Graph Attention Collaborative Learning for Temporal QoS Prediction [5.040979636805073]
We propose a novel Graph Collaborative Learning (GACL) framework for temporal prediction.
It builds on a dynamic user-service graph to comprehensively model historical interactions.
Experiments on the WS-DREAM dataset demonstrate that GACL significantly outperforms state-of-the-art methods for temporal prediction.
arXiv Detail & Related papers (2024-08-20T05:38:47Z) - Linear-Time Graph Neural Networks for Scalable Recommendations [50.45612795600707]
The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions.
Recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems.
We propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches.
arXiv Detail & Related papers (2024-02-21T17:58:10Z) - Large Language Model Meets Graph Neural Network in Knowledge Distillation [7.686812700685084]
We propose a temporal-aware framework for predicting Quality of Service (QoS) in service-oriented architectures.
Our proposed TOGCL framework significantly outperforms state-of-the-art methods across multiple metrics, achieving improvements of up to 38.80%.
arXiv Detail & Related papers (2024-02-08T18:33:21Z) - ARRQP: Anomaly Resilient Real-time QoS Prediction Framework with Graph
Convolution [0.16317061277456998]
We introduce a real-time prediction framework (called ARRQP) with a specific emphasis on improving resilience to anomalies in the data.
ARRQP integrates both contextual information and collaborative insights, enabling a comprehensive understanding of user-service interactions.
Results on the benchmark WS-DREAM dataset demonstrate the framework's effectiveness in achieving accurate and timely predictions.
arXiv Detail & Related papers (2023-09-22T04:37:51Z) - Blink: Link Local Differential Privacy in Graph Neural Networks via
Bayesian Estimation [79.64626707978418]
We propose using link local differential privacy over decentralized nodes to train graph neural networks.
Our approach spends the privacy budget separately on links and degrees of the graph for the server to better denoise the graph topology.
Our approach outperforms existing methods in terms of accuracy under varying privacy budgets.
arXiv Detail & Related papers (2023-09-06T17:53:31Z) - A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and
Applications [76.88662943995641]
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data.
To address this issue, researchers have started to develop privacy-preserving GNNs.
Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain.
arXiv Detail & Related papers (2023-08-31T00:31:08Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data.
GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant.
We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates.
arXiv Detail & Related papers (2023-05-23T21:38:23Z) - TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features [0.5161531917413706]
Temporal Prediction is essential to identify a suitable service over time.
Recent methods hardly achieved desired accuracy due to various limitations.
This paper proposes a scalable strategy for Temporal Prediction using Multi-source Collaborative-Features.
arXiv Detail & Related papers (2023-03-30T06:49:53Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
We propose fusing social information with user-item interactions to alleviate it, which is the social recommendation problem.
We devise a novel framework textbfFedrated textbfSocial recommendation with textbfGraph neural network (FeSoG)
arXiv Detail & Related papers (2021-11-21T09:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.