TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features
- URL: http://arxiv.org/abs/2303.18201v2
- Date: Sat, 14 Oct 2023 16:40:27 GMT
- Title: TPMCF: Temporal QoS Prediction using Multi-Source Collaborative Features
- Authors: Suraj Kumar, Soumi Chattopadhyay, Chandranath Adak
- Abstract summary: Temporal Prediction is essential to identify a suitable service over time.
Recent methods hardly achieved desired accuracy due to various limitations.
This paper proposes a scalable strategy for Temporal Prediction using Multi-source Collaborative-Features.
- Score: 0.5161531917413706
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, with the rapid deployment of service APIs, personalized service
recommendations have played a paramount role in the growth of the e-commerce
industry. Quality-of-Service (QoS) parameters determining the service
performance, often used for recommendation, fluctuate over time. Thus, the QoS
prediction is essential to identify a suitable service among functionally
equivalent services over time. The contemporary temporal QoS prediction methods
hardly achieved the desired accuracy due to various limitations, such as the
inability to handle data sparsity and outliers and capture higher-order
temporal relationships among user-service interactions. Even though some recent
recurrent neural-network-based architectures can model temporal relationships
among QoS data, prediction accuracy degrades due to the absence of other
features (e.g., collaborative features) to comprehend the relationship among
the user-service interactions. This paper addresses the above challenges and
proposes a scalable strategy for Temporal QoS Prediction using Multi-source
Collaborative-Features (TPMCF), achieving high prediction accuracy and faster
responsiveness. TPMCF combines the collaborative-features of users/services by
exploiting user-service relationship with the spatio-temporal auto-extracted
features by employing graph convolution and transformer encoder with multi-head
self-attention. We validated our proposed method on WS-DREAM-2 datasets.
Extensive experiments showed TPMCF outperformed major state-of-the-art
approaches regarding prediction accuracy while ensuring high scalability and
reasonably faster responsiveness.
Related papers
- Anomaly Resilient Temporal QoS Prediction using Hypergraph Convoluted Transformer Network [0.47248250311484113]
Quality-of-Service (QoS) prediction is a critical task in the service lifecycle.
Traditional methods often encounter data sparsity and cold-start issues.
We introduce a real-time, trust-aware framework for temporal prediction.
arXiv Detail & Related papers (2024-10-23T11:01:39Z) - GACL: Graph Attention Collaborative Learning for Temporal QoS Prediction [5.040979636805073]
We propose a novel Graph Collaborative Learning (GACL) framework for temporal prediction.
It builds on a dynamic user-service graph to comprehensively model historical interactions.
Experiments on the WS-DREAM dataset demonstrate that GACL significantly outperforms state-of-the-art methods for temporal prediction.
arXiv Detail & Related papers (2024-08-20T05:38:47Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - QoS prediction in radio vehicular environments via prior user
information [54.853542701389074]
We evaluate ML tree-ensemble methods to predict in the range of minutes with data collected from a cellular test network.
Specifically, we use the correlations of the measurements coming from the radio environment by including information of prior vehicles to enhance the prediction of the target vehicles.
arXiv Detail & Related papers (2024-02-27T17:05:41Z) - Large Language Model Meets Graph Neural Network in Knowledge Distillation [7.686812700685084]
We propose a temporal-aware framework for predicting Quality of Service (QoS) in service-oriented architectures.
Our proposed TOGCL framework significantly outperforms state-of-the-art methods across multiple metrics, achieving improvements of up to 38.80%.
arXiv Detail & Related papers (2024-02-08T18:33:21Z) - ARRQP: Anomaly Resilient Real-time QoS Prediction Framework with Graph
Convolution [0.16317061277456998]
We introduce a real-time prediction framework (called ARRQP) with a specific emphasis on improving resilience to anomalies in the data.
ARRQP integrates both contextual information and collaborative insights, enabling a comprehensive understanding of user-service interactions.
Results on the benchmark WS-DREAM dataset demonstrate the framework's effectiveness in achieving accurate and timely predictions.
arXiv Detail & Related papers (2023-09-22T04:37:51Z) - Improving Text Matching in E-Commerce Search with A Rationalizable,
Intervenable and Fast Entity-Based Relevance Model [78.80174696043021]
We propose a novel model called the Entity-Based Relevance Model (EBRM)
The decomposition allows us to use a Cross-encoder QE relevance module for high accuracy.
We also show that pretraining the QE module with auto-generated QE data from user logs can further improve the overall performance.
arXiv Detail & Related papers (2023-07-01T15:44:53Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - An ADMM-Incorporated Latent Factorization of Tensors Method for QoS
Prediction [2.744577504320494]
Quality of service (QoS) describes the performance of a web service dynamically with respect to the service requested by the service consumer.
Latent factorization of tenors (LFT) is very effective for discovering temporal patterns in high dimensional and sparse (HiDS) tensors.
Current LFT models suffer from a low convergence rate and rarely account for the effects of outliers.
arXiv Detail & Related papers (2022-12-03T12:35:48Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.