Looking elsewhere: improving variational Monte Carlo gradients by importance sampling
- URL: http://arxiv.org/abs/2507.05352v1
- Date: Mon, 07 Jul 2025 18:00:03 GMT
- Title: Looking elsewhere: improving variational Monte Carlo gradients by importance sampling
- Authors: Antoine Misery, Luca Gravina, Alessandro Santini, Filippo Vicentini,
- Abstract summary: Neural-network quantum states (NQS) offer a powerful and expressive ansatz for representing quantum many-body wave functions.<n>It is well known that some scenarios - such as sharply peaked wave functions emerging in quantum chemistry - lead to high-variance gradient estimators hindering the effectiveness of variational optimizations.<n>In this work we investigate a systematic strategy to tackle those sampling issues by means of adaptively tuned importance sampling.<n>Our approach can reduce the computational cost of vanilla VMC considerably, up to a factor of 100x when targeting highly peaked quantum chemistry wavefunctions.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural-network quantum states (NQS) offer a powerful and expressive ansatz for representing quantum many-body wave functions. However, their training via Variational Monte Carlo (VMC) methods remains challenging. It is well known that some scenarios - such as sharply peaked wave functions emerging in quantum chemistry - lead to high-variance gradient estimators hindering the effectiveness of variational optimizations. In this work we investigate a systematic strategy to tackle those sampling issues by means of adaptively tuned importance sampling. Our approach is explicitly designed to (i) target the gradient estimator instead of the loss function, (ii) not introduce additional hyperparameters and (iii) be computationally inexpensive. We benchmarked our approach across the ground-state search of a wide variety of hamiltonians, including frustrated spin systems and ab-initio quantum chemistry. We also show systematic improvements on the infidelity minimization in the context of neural projected quantum dynamics. Overall, our approach can reduce the computational cost of vanilla VMC considerably, up to a factor of 100x when targeting highly peaked quantum chemistry wavefunctions.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Calibration of Quantum Devices via Robust Statistical Methods [45.464983015777314]
We numerically analyze advanced statistical methods for Bayesian inference against the state-of-the-art in quantum parameter learning.<n>We show advantages of these approaches over existing ones, namely under multi-modality and high dimensionality.<n>Our findings have applications in challenging quantumcharacterization tasks namely learning the dynamics of open quantum systems.
arXiv Detail & Related papers (2025-07-09T15:22:17Z) - Diffusion-Enhanced Optimization of Variational Quantum Eigensolver for General Hamiltonians [17.975555487972166]
Variational quantum algorithms (VQAs) have emerged as a promising approach for achieving quantum advantage on current noisy quantum devices.<n>However, their large-scale applications are significantly hindered by optimization challenges, such as the barren plateau (BP) phenomenon, local minima, and numerous iteration demands.<n>In this work, we leverage denoising diffusion models (DMs) to address these difficulties.
arXiv Detail & Related papers (2025-01-10T02:32:46Z) - Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Machine-learning-inspired quantum control in many-body dynamics [6.817811305553492]
We introduce a promising and versatile control neural network tailored to optimize control fields.
We address the problem of suppressing defect density and enhancing cat-state fidelity during the passage across the critical point in the quantum Ising model.
In comparison to gradient-based power-law quench methods, our approach demonstrates significant advantages for both small system sizes and long-term evolutions.
arXiv Detail & Related papers (2024-04-09T01:47:55Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Gradient Ascent Pulse Engineering with Feedback [0.0]
We introduce feedback-GRAPE, which borrows some concepts from model-free reinforcement learning to incorporate the response to strong measurements.
Our method yields interpretable feedback strategies for state preparation and stabilization in the presence of noise.
arXiv Detail & Related papers (2022-03-08T18:46:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.