TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing
- URL: http://arxiv.org/abs/2508.01116v1
- Date: Fri, 01 Aug 2025 23:37:55 GMT
- Title: TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing
- Authors: Jun Qi, Chao-Han Yang, Pin-Yu Chen, Min-Hsiu Hsieh,
- Abstract summary: TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
- Score: 60.996803677584424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Quantum Computing (VQC) faces fundamental barriers in scalability, primarily due to barren plateaus and quantum noise sensitivity. To address these challenges, we introduce TensoMeta-VQC, a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly. Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware. This innovative parameterization mitigates gradient vanishing, enhances noise resilience through structured low-rank representations, and facilitates efficient gradient propagation. Based on Neural Tangent Kernel and statistical learning theory, our rigorous theoretical analyses establish strong guarantees on approximation capability, optimization stability, and generalization performance. Extensive empirical results across quantum dot classification, Max-Cut optimization, and molecular quantum simulation tasks demonstrate that TensoMeta-VQC consistently achieves superior performance and robust noise tolerance, establishing it as a principled pathway toward practical and scalable VQC on near-term quantum devices.
Related papers
- Gate Freezing Method for Gradient-Free Variational Quantum Algorithms in Circuit Optimization [0.0]
Quantum circuits (PQCs) are key components of variational quantum algorithms (VQAs)<n>PQCs enable flexible encoding of quantum information through quantum gates and have been successfully applied across domains such as quantum chemistry, optimization, and quantum machine learning.<n>Despite their potential, PQC performance on NISQ hardware is hindered by noise, decoherence, and the presence of barren plateaus, which can impede gradient-based optimization.
arXiv Detail & Related papers (2025-07-10T13:22:31Z) - Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
We propose QSC-Diffusion, the first fully quantum diffusion-based framework for image generation.<n>We employ parameterized quantum circuits with measurement-induced collapse for reverse denoising.<n>Remarkably, QSC-Diffusion achieves competitive FID scores across multiple datasets.
arXiv Detail & Related papers (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
Quantum-Train (QT) is a hybrid quantum-classical machine learning framework.
It maps quantum state measurements to classical neural network weights.
Traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability.
We introduce a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes.
arXiv Detail & Related papers (2024-09-11T03:51:34Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.