論文の概要: On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study
- arxiv url: http://arxiv.org/abs/2507.05362v1
- Date: Mon, 07 Jul 2025 18:00:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.283085
- Title: On the Bias of Next-Token Predictors Toward Systematically Inefficient Reasoning: A Shortest-Path Case Study
- Title(参考訳): 系統的非効率推論に向けた次世代予測器のバイアスについて--最短ケーススタディ
- Authors: Riccardo Alberghi, Elizaveta Demyanenko, Luca Biggio, Luca Saglietti,
- Abstract要約: 大規模言語モデルにおける推論を改善するための2つの重要な要因について検討する。
我々は、カスタムトークン化器を用いて、質問-トレース-回答三重項に対してデコーダのみの変換器を訓練する。
同じトレーニングの予算で、非効率なトレースで訓練されたモデルは、目に見えないグラフよりも一般化される。
- 参考スコア(独自算出の注目度): 4.319482898846564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in natural language processing highlight two key factors for improving reasoning in large language models (LLMs): (i) allocating more test-time compute tends to help on harder problems but often introduces redundancy in the reasoning trace, and (ii) compute is most effective when reasoning is systematic and incremental, forming structured chains of thought (CoTs) akin to human problem-solving. To study these factors in isolation, we introduce a controlled setting based on shortest-path tasks in layered graphs. We train decoder-only transformers on question-trace-answer triples using a custom tokenizer, comparing models trained on optimal bottom-up dynamic programming traces with those trained on longer, valid traces involving backtracking. Surprisingly, with the same training-token budget, models trained on inefficient traces generalize better to unseen graphs. This benefit is not due to length alone-injecting arbitrary redundancy into reasoning traces fails to help and can even hurt performance. Instead, we find that generalization correlates with the model's confidence in next-token prediction, suggesting that long, coherent, and locally incremental traces make the training signal easier to optimize.
- Abstract(参考訳): 自然言語処理の最近の進歩は、大規模言語モデル(LLM)における推論を改善するための2つの重要な要因を浮き彫りにしている。
i) より多くのテスト時間計算を割り当てることは、難しい問題に役立ちますが、しばしば推論トレースの冗長性を導入します。
(II) 推論が体系的かつ漸進的であり、人間の問題解決に類似した構造化された思考の連鎖(CoT)を形成する場合、計算は最も効果的である。
これらの要因を分離して研究するために、階層グラフにおける最短パスタスクに基づいた制御設定を導入する。
カスタムトークン化器を用いて,デコーダのみのトランスフォーマをトレーニングし,最適なボトムアップ動的プログラミングトレースをトレーニングしたモデルと,バックトラッキングを含むより長い有効なトレースをトレーニングしたモデルを比較した。
驚くべきことに、トレーニングの予算は同じで、非効率なトレースで訓練されたモデルは、目に見えないグラフよりも一般化されている。
この利点は、任意の冗長性を推論トレースに注入する長さだけでは役に立たないためではなく、パフォーマンスを損なう可能性がある。
代わりに、一般化はモデルが次から次へと予測する自信と相関し、長い、一貫性があり、局所的なトレースがトレーニング信号の最適化を容易にすることを示唆する。
関連論文リスト
- Interpretable Traces, Unexpected Outcomes: Investigating the Disconnect in Trace-Based Knowledge Distillation [14.489157453882767]
この研究は、推論トレースと最終的なパフォーマンスとの相関を評価することの課題に対処することを目的としている。
規則に基づく問題分解を利用して解釈可能なトレースを生成する。
具体的には、この問題を分類ステップと情報検索ステップに分解して、オープンブックQAにおけるこのアプローチを実証する。
論文 参考訳(メタデータ) (2025-05-20T00:49:19Z) - Beyond Semantics: The Unreasonable Effectiveness of Reasonless Intermediate Tokens [14.78605805191225]
中間トークンのセマンティクスが「思考」や「推論トレース」として人間化され、実際にモデル性能にどのように影響するかを考察する。
解のみのベースラインが大幅に改善されているにもかかわらず、完全に正しいトレースで訓練されたモデルは、正しい解に到達すると、いまだに不正な推論トレースを生成する。
論文 参考訳(メタデータ) (2025-05-19T23:29:23Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
完全CoTと解のみのサンプリングを補間する統合推論時間戦略であるフラクチャードサンプリングを導入する。
フラクチャードサンプリングは、Pass@kとトークンの予算に対して、急激なログ線形スケーリングゲインをもたらすため、優れた精度とコストのトレードオフを一貫して達成できることを示す。
論文 参考訳(メタデータ) (2025-05-19T11:30:41Z) - ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning [1.0416697066889342]
そこで本研究では,手動による指導を必要とせずに,推論モデルによる最適なCoT長の学習を可能にする,簡易かつ効果的な強化学習手法を提案する。
ShorterBetterは、ドメイン内およびドメイン外推論タスクの出力長を50%-80%削減する。
我々の推論トレース分析は、不要な反復、過剰な自己検証、代替品の過剰探索を減らし、ショーターベッターが推論トレースの構造を洗練することを示している。
論文 参考訳(メタデータ) (2025-04-30T07:04:19Z) - To Backtrack or Not to Backtrack: When Sequential Search Limits Model Reasoning [31.21491548356213]
バックトラックは、長いチェーン・オブ・シント(CoT)生成による逐次線形化探索を可能にすることによって、テスト時間計算を自然にスケールする。
シーケンシャル検索の普及にもかかわらず、並列サンプリングよりも優位性はよく分かっていない。
バックトラック機能を持つモデルはRL微調整の恩恵を受けるが,バックトラック機能を持たないモデルは限定的かつ混合的なゲインを示す。
論文 参考訳(メタデータ) (2025-04-09T17:12:49Z) - Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching [60.04718679054704]
Chain-of-Thoughtはステップバイステップの問題解決を促すが、中間出力の過剰な冗長性を犠牲にすることが多い。
我々は,認知にインスパイアされた推論パラダイムを言語制約と統合する促進フレームワークであるSketch-of-Thought(SoT)を提案する。
SoTはトークンを最大78%削減し、15の推論データセットで最小限の精度損失を発生させる。
論文 参考訳(メタデータ) (2025-03-07T06:57:17Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
大規模言語モデルの推論効率を向上させるために,Unsupervised Prefix Fine-Tuning (UPFT)を導入した。
UPFTはラベル付きデータや徹底的なサンプリングの必要性を取り除く。
実験の結果,UPFTは教師付き手法の性能と一致していることがわかった。
論文 参考訳(メタデータ) (2025-03-04T18:56:03Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。