Heterogeneous Causal Learning for Optimizing Aggregated Functions in User Growth
- URL: http://arxiv.org/abs/2507.05510v1
- Date: Mon, 07 Jul 2025 22:08:45 GMT
- Title: Heterogeneous Causal Learning for Optimizing Aggregated Functions in User Growth
- Authors: Shuyang Du, Jennifer Zhang, Will Y. Zou,
- Abstract summary: We propose a novel treatment effect optimization methodology to enhance user growth marketing.<n>By leveraging deep learning, our algorithm learns from past experiments to optimize user selection and reward allocation.<n>We experimentally demonstrate that our proposed constrained and direct optimization algorithms significantly outperform state-of-the-art methods by over $20%$.
- Score: 0.7100520098029438
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: User growth is a major strategy for consumer internet companies. To optimize costly marketing campaigns and maximize user engagement, we propose a novel treatment effect optimization methodology to enhance user growth marketing. By leveraging deep learning, our algorithm learns from past experiments to optimize user selection and reward allocation, maximizing campaign impact while minimizing costs. Unlike traditional prediction methods, our model directly models uplifts in key business metrics. Further, our deep learning model can jointly optimize parameters for an aggregated loss function using softmax gating. Our approach surpasses traditional methods by directly targeting desired business metrics and demonstrates superior algorithmic flexibility in handling complex business constraints. Comprehensive evaluations, including comparisons with state-of-the-art techniques such as R-learner and Causal Forest, validate the effectiveness of our model. We experimentally demonstrate that our proposed constrained and direct optimization algorithms significantly outperform state-of-the-art methods by over $20\%$, proving their cost-efficiency and real-world impact. The versatile methods can be applied to various product scenarios, including optimal treatment allocation. Its effectiveness has also been validated through successful worldwide production deployments.
Related papers
- Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - Metalearners for Ranking Treatment Effects [1.469168639465869]
We show how learning to rank can maximize the area under a policy's incremental profit curve.
We show how learning to rank can maximize the area under a policy's incremental profit curve.
arXiv Detail & Related papers (2024-05-03T15:31:18Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
This paper considers the problem of offline optimization, where the objective function is unknown except for a collection of offline" data examples.
Instead of learning and then optimizing the unknown objective function, we take on a less intuitive but more direct view that optimization can be thought of as a process of sampling from a generative model.
arXiv Detail & Related papers (2024-01-04T01:32:50Z) - Integrating Fairness and Model Pruning Through Bi-level Optimization [16.213634992886384]
We introduce a novel concept of fair model pruning, which involves developing a sparse model that adheres to fairness criteria.<n>In particular, we propose a framework to jointly optimize the pruning mask and weight update processes with fairness constraints.<n>This framework is engineered to compress models that maintain performance while ensuring fairness in a unified process.
arXiv Detail & Related papers (2023-12-15T20:08:53Z) - Heterogeneous Causal Learning for Effectiveness Optimization in User
Marketing [2.752817022620644]
We propose a treatment effect optimization methodology for user marketing.
This algorithm learns from past experiments and utilizes novel optimization methods to optimize cost efficiency with respect to user selection.
Our proposed constrained and direct optimization algorithms outperform by 24.6% compared with the best performing method in prior art and baseline methods.
arXiv Detail & Related papers (2020-04-21T01:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.