Robust Learning on Noisy Graphs via Latent Space Constraints with External Knowledge
- URL: http://arxiv.org/abs/2507.05540v1
- Date: Mon, 07 Jul 2025 23:43:24 GMT
- Title: Robust Learning on Noisy Graphs via Latent Space Constraints with External Knowledge
- Authors: Chunhui Gu, Mohammad Sadegh Nasr, James P. Long, Kim-Anh Do, Ehsan Irajizad,
- Abstract summary: We propose Latent Space Constrained Graph Neural Networks (LSC-GNN) to incorporate external "clean" links and guide embeddings of a noisy target graph.<n> Experiments on benchmark datasets show LSC-GNN outperforms standard and noise-resilient GNNs in graphs subjected to moderate noise.<n>Our results highlight LSC-GNN's potential to boost predictive performance and interpretability in settings with noisy relational structures.
- Score: 0.9320657506524149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) often struggle with noisy edges. We propose Latent Space Constrained Graph Neural Networks (LSC-GNN) to incorporate external "clean" links and guide embeddings of a noisy target graph. We train two encoders--one on the full graph (target plus external edges) and another on a regularization graph excluding the target's potentially noisy links--then penalize discrepancies between their latent representations. This constraint steers the model away from overfitting spurious edges. Experiments on benchmark datasets show LSC-GNN outperforms standard and noise-resilient GNNs in graphs subjected to moderate noise. We extend LSC-GNN to heterogeneous graphs and validate it on a small protein-metabolite network, where metabolite-protein interactions reduce noise in protein co-occurrence data. Our results highlight LSC-GNN's potential to boost predictive performance and interpretability in settings with noisy relational structures.
Related papers
- Spatio-Spectral Graph Neural Networks [50.277959544420455]
We propose Spatio-Spectral Graph Networks (S$2$GNNs)
S$2$GNNs combine spatially and spectrally parametrized graph filters.
We show that S$2$GNNs vanquish over-squashing and yield strictly tighter approximation-theoretic error bounds than MPGNNs.
arXiv Detail & Related papers (2024-05-29T14:28:08Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
Graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets.
This work proposes a robust implementation of GNNs that explicitly accounts for the presence of perturbations in the observed topology.
arXiv Detail & Related papers (2023-12-11T17:43:57Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems.
We introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator.
We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem.
arXiv Detail & Related papers (2023-08-07T05:22:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
We propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks.
We show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem.
arXiv Detail & Related papers (2022-05-27T01:29:03Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels [24.25945793671978]
We study a novel problem of developing robust GNNs on noisy graphs with limited labeled nodes.
Our analysis shows that both the noisy edges and limited labeled nodes could harm the message-passing mechanism of GNNs.
We propose a novel framework which adopts the noisy edges as supervision to learn a denoised and dense graph.
arXiv Detail & Related papers (2022-01-01T19:00:26Z) - Training Stable Graph Neural Networks Through Constrained Learning [116.03137405192356]
Graph Neural Networks (GNNs) rely on graph convolutions to learn features from network data.
GNNs are stable to different types of perturbations of the underlying graph, a property that they inherit from graph filters.
We propose a novel constrained learning approach by imposing a constraint on the stability condition of the GNN within a perturbation of choice.
arXiv Detail & Related papers (2021-10-07T15:54:42Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Understanding Graph Neural Networks from Graph Signal Denoising
Perspectives [27.148827305359436]
Graph neural networks (GNNs) have attracted much attention because of their excellent performance on tasks such as node classification.
This paper aims to provide a theoretical framework to understand GNNs, specifically, spectral graph convolutional networks and graph attention networks.
arXiv Detail & Related papers (2020-06-08T07:10:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.