ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting
- URL: http://arxiv.org/abs/2205.13700v5
- Date: Tue, 17 Sep 2024 04:51:55 GMT
- Title: ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting
- Authors: Jingwei Guo, Kaizhu Huang, Rui Zhang, Xinping Yi,
- Abstract summary: We propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks.
We show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem.
- Score: 32.69196871253339
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Graph Neural Networks (GNNs) have achieved enormous success in multiple graph analytical tasks, modern variants mostly rely on the strong inductive bias of homophily. However, real-world networks typically exhibit both homophilic and heterophilic linking patterns, wherein adjacent nodes may share dissimilar attributes and distinct labels. Therefore, GNNs smoothing node proximity holistically may aggregate both task-relevant and irrelevant (even harmful) information, limiting their ability to generalize to heterophilic graphs and potentially causing non-robustness. In this work, we propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks. This essentially transfers the original graph into two subgraphs with the same node set but complementary edge sets dynamically. Given that, information propagation separately on these subgraphs and edge splitting are alternatively conducted, thus disentangling the task-relevant and irrelevant features. Theoretically, we show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem, which further illustrates our motivations and interprets the improved generalization beyond homophily. Extensive experiments over 11 benchmark and 1 synthetic datasets not only demonstrate the effective performance of ES-GNN but also highlight its robustness to adversarial graphs and mitigation of the over-smoothing problem.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Learning heterophilious edge to drop: A general framework for boosting
graph neural networks [19.004710957882402]
This work aims at mitigating the negative impacts of heterophily by optimizing graph structure for the first time.
We propose a structure learning method called LHE to identify heterophilious edges to drop.
Experiments demonstrate the remarkable performance improvement of GNNs with emphLHE on multiple datasets across full spectrum of homophily level.
arXiv Detail & Related papers (2022-05-23T14:07:29Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
We propose a new metric based on von Neumann entropy to re-examine the heterophily problem of GNNs.
We also propose a Conv-Agnostic GNN framework (CAGNNs) to enhance the performance of most GNNs on heterophily datasets.
arXiv Detail & Related papers (2022-03-19T14:26:43Z) - Incorporating Heterophily into Graph Neural Networks for Graph Classification [6.709862924279403]
Graph Neural Networks (GNNs) often assume strong homophily for graph classification, seldom considering heterophily.
We develop a novel GNN architecture called IHGNN (short for Incorporating Heterophily into Graph Neural Networks)
We empirically validate IHGNN on various graph datasets and demonstrate that it outperforms the state-of-the-art GNNs for graph classification.
arXiv Detail & Related papers (2022-03-15T06:48:35Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
We provide a comprehensive review of graph neural networks (GNNs) for heterophilic graphs.
Specifically, we propose a systematic taxonomy that essentially governs existing heterophilic GNN models.
We discuss the correlation between graph heterophily and various graph research domains, aiming to facilitate the development of more effective GNNs.
arXiv Detail & Related papers (2022-02-14T23:07:47Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Higher-Order Attribute-Enhancing Heterogeneous Graph Neural Networks [67.25782890241496]
We propose a higher-order Attribute-Enhancing Graph Neural Network (HAEGNN) for heterogeneous network representation learning.
HAEGNN simultaneously incorporates meta-paths and meta-graphs for rich, heterogeneous semantics.
It shows superior performance against the state-of-the-art methods in node classification, node clustering, and visualization.
arXiv Detail & Related papers (2021-04-16T04:56:38Z) - Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs [6.018995094882323]
Graph neural networks (GNNs) have been extensively studied for prediction tasks on graphs.
Most GNNs assume local homophily, i.e., strong similarities in localneighborhoods.
We propose a flexible GNN model, which is capable of handling any graphs without beingrestricted by their underlying homophily.
arXiv Detail & Related papers (2021-03-26T00:35:36Z) - Graph Neural Networks with Heterophily [40.23690407583509]
We propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily.
We show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN.
arXiv Detail & Related papers (2020-09-28T18:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.