Search-based Selection of Metamorphic Relations for Optimized Robustness Testing of Large Language Models
- URL: http://arxiv.org/abs/2507.05565v1
- Date: Tue, 08 Jul 2025 01:11:27 GMT
- Title: Search-based Selection of Metamorphic Relations for Optimized Robustness Testing of Large Language Models
- Authors: Sangwon Hyun, Shaukat Ali, M. Ali Babar,
- Abstract summary: This paper proposes a search-based approach for optimizing the Metamorphic Relations groups to maximize failure detection and minimize the execution cost.<n>We conducted comparative experiments on the four search algorithms along with a random search, using two major Large Language Models (LLMs)<n>We identified silver bullet MRs for the robustness testing, which demonstrated dominant capabilities in confusing LLMs across different Text-to-Text tasks.
- Score: 4.278063359062737
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Assessing the trustworthiness of Large Language Models (LLMs), such as robustness, has garnered significant attention. Recently, metamorphic testing that defines Metamorphic Relations (MRs) has been widely applied to evaluate the robustness of LLM executions. However, the MR-based robustness testing still requires a scalable number of MRs, thereby necessitating the optimization of selecting MRs. Most extant LLM testing studies are limited to automatically generating test cases (i.e., MRs) to enhance failure detection. Additionally, most studies only considered a limited test space of single perturbation MRs in their evaluation of LLMs. In contrast, our paper proposes a search-based approach for optimizing the MR groups to maximize failure detection and minimize the LLM execution cost. Moreover, our approach covers the combinatorial perturbations in MRs, facilitating the expansion of test space in the robustness assessment. We have developed a search process and implemented four search algorithms: Single-GA, NSGA-II, SPEA2, and MOEA/D with novel encoding to solve the MR selection problem in the LLM robustness testing. We conducted comparative experiments on the four search algorithms along with a random search, using two major LLMs with primary Text-to-Text tasks. Our statistical and empirical investigation revealed two key findings: (1) the MOEA/D algorithm performed the best in optimizing the MR space for LLM robustness testing, and (2) we identified silver bullet MRs for the LLM robustness testing, which demonstrated dominant capabilities in confusing LLMs across different Text-to-Text tasks. In LLM robustness assessment, our research sheds light on the fundamental problem for optimized testing and provides insights into search-based solutions.
Related papers
- Large Language Model-Driven Surrogate-Assisted Evolutionary Algorithm for Expensive Optimization [22.024630467760264]
Surrogate-assisted evolutionary algorithms (SAEAs) are a key tool for addressing costly optimization tasks.<n>This paper proposes LLM-SAEA, a novel approach that integrates large language models (LLMs) to configure both surrogate models and infill sampling criteria online.
arXiv Detail & Related papers (2025-06-20T13:44:21Z) - LLM-First Search: Self-Guided Exploration of the Solution Space [29.780554400938335]
Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute.<n>We propose textbfLLM-First Search (LFS), a novel textitLLM Self-Guided Search method.
arXiv Detail & Related papers (2025-06-05T16:27:49Z) - MLRC-Bench: Can Language Agents Solve Machine Learning Research Challenges? [64.62421656031128]
MLRC-Bench is a benchmark designed to quantify how effectively language agents can tackle challenging Machine Learning (ML) Research Competitions.<n>Unlike prior work, MLRC-Bench measures the key steps of proposing and implementing novel research methods.<n>Even the best-performing tested agent closes only 9.3% of the gap between baseline and top human participant scores.
arXiv Detail & Related papers (2025-04-13T19:35:43Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM [15.260794368585692]
We propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated Operations Research problem solving.<n>We show that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7% in accuracy.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have been widely adopted due to their remarkable performance across various applications.<n>These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.<n>We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
arXiv Detail & Related papers (2024-07-20T07:39:07Z) - Large Language Model Assisted Adversarial Robustness Neural Architecture Search [14.122460940115069]
This paper proposes a novel LLM-assisted (LLMO) to address adversarial neural architecture search (ARNAS)
We design prompt using the standard CRISPE framework (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment)
We iteratively refine the prompt, and the responses from Gemini are adapted as solutions to ARNAS instances.
arXiv Detail & Related papers (2024-06-08T10:45:07Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z) - METAL: Metamorphic Testing Framework for Analyzing Large-Language Model
Qualities [4.493507573183107]
Large-Language Models (LLMs) have shifted the paradigm of natural language data processing.
Recent studies have tested Quality Attributes (QAs) of LLMs by generating adversarial input texts.
We propose a MEtamorphic Testing for Analyzing LLMs (METAL) framework to address these issues.
arXiv Detail & Related papers (2023-12-11T01:29:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.