On the Design and Analysis of LLM-Based Algorithms
- URL: http://arxiv.org/abs/2407.14788v2
- Date: Thu, 26 Sep 2024 10:21:33 GMT
- Title: On the Design and Analysis of LLM-Based Algorithms
- Authors: Yanxi Chen, Yaliang Li, Bolin Ding, Jingren Zhou,
- Abstract summary: Large language models (LLMs) are used as sub-routines in algorithms.
LLMs have achieved remarkable empirical success.
Our proposed framework holds promise for advancing LLM-based algorithms.
- Score: 74.7126776018275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate a formal investigation into the design and analysis of LLM-based algorithms, i.e. algorithms that contain one or multiple calls of large language models (LLMs) as sub-routines and critically rely on the capabilities of LLMs. While LLM-based algorithms, ranging from basic LLM calls with prompt engineering to complicated LLM-powered agent systems and compound AI systems, have achieved remarkable empirical success, the design and optimization of them have mostly relied on heuristics and trial-and-errors, which is largely due to a lack of formal and analytical study for these algorithms. To fill this gap, we start by identifying the computational-graph representation of LLM-based algorithms, the design principle of task decomposition, and some key abstractions, which then facilitate our formal analysis for the accuracy and efficiency of LLM-based algorithms, despite the black-box nature of LLMs. Through extensive analytical and empirical investigation in a series of case studies, we demonstrate that the proposed framework is broadly applicable to a wide range of scenarios and diverse patterns of LLM-based algorithms, such as parallel, hierarchical and recursive task decomposition. Our proposed framework holds promise for advancing LLM-based algorithms, by revealing the reasons behind curious empirical phenomena, guiding the choices of hyperparameters, predicting the empirical performance of algorithms, and inspiring new algorithm design. To promote further study of LLM-based algorithms, we release our source code at https://github.com/modelscope/agentscope/tree/main/examples/paper_llm_based_algorithm.
Related papers
- Are Large-Language Models Graph Algorithmic Reasoners? [45.592341677933646]
We introduce a benchmark designed to evaluate Large Language Models (LLMs) performance on classical algorithmic reasoning tasks on explicit graphs.
Our benchmark encompasses five fundamental algorithms: Breadth-First Search (BFS) and Depth-First Search (DFS) for connectivity, Dijkstra's algorithm and Floyd-Warshall algorithm for all nodes shortest path, and Prim's Minimum Spanning Tree (MST-Prim's) algorithm.
arXiv Detail & Related papers (2024-10-29T23:28:37Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Thought of Search: Planning with Language Models Through The Lens of Efficiency [22.47015814897628]
We argue that recent trends abandon both soundness and completeness for the sake of inefficiency.
We show that by using LLMs to produce the code for the search components we can solve the entire datasets with 100% accuracy.
arXiv Detail & Related papers (2024-04-18T01:27:29Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Large Language Model-Enhanced Algorithm Selection: Towards Comprehensive Algorithm Representation [27.378185644892984]
This paper introduces Large Language Models (LLMs) into algorithm selection for the first time.
LLMs not only captures the structural and semantic aspects of the algorithm, but also demonstrates contextual awareness and library function understanding.
The selected algorithm is determined by the matching degree between a given problem and different algorithms.
arXiv Detail & Related papers (2023-11-22T06:23:18Z) - Algorithm of Thoughts: Enhancing Exploration of Ideas in Large Language Models [17.059322033670124]
We propose a novel strategy that propels Large Language Models through algorithmic reasoning pathways.
Our results suggest that instructing an LLM using an algorithm can lead to performance surpassing that of the algorithm itself.
arXiv Detail & Related papers (2023-08-20T22:36:23Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.