ADMC: Attention-based Diffusion Model for Missing Modalities Feature Completion
- URL: http://arxiv.org/abs/2507.05624v1
- Date: Tue, 08 Jul 2025 03:08:52 GMT
- Title: ADMC: Attention-based Diffusion Model for Missing Modalities Feature Completion
- Authors: Wei Zhang, Juan Chen, Yanbo J. Wang, En Zhu, Xuan Yang, Yiduo Wang,
- Abstract summary: We introduce an Attention-based Diffusion model for Missing Modalities feature Completion (ADMC)<n>Our framework independently trains feature extraction networks for each modality, preserving their unique characteristics and avoiding over-coupling.<n>Our approach achieves state-of-the-art results on the IEMOCAP and MIntRec benchmarks, demonstrating its effectiveness in both missing and complete modality scenarios.
- Score: 25.1725138364452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal emotion and intent recognition is essential for automated human-computer interaction, It aims to analyze users' speech, text, and visual information to predict their emotions or intent. One of the significant challenges is that missing modalities due to sensor malfunctions or incomplete data. Traditional methods that attempt to reconstruct missing information often suffer from over-coupling and imprecise generation processes, leading to suboptimal outcomes. To address these issues, we introduce an Attention-based Diffusion model for Missing Modalities feature Completion (ADMC). Our framework independently trains feature extraction networks for each modality, preserving their unique characteristics and avoiding over-coupling. The Attention-based Diffusion Network (ADN) generates missing modality features that closely align with authentic multimodal distribution, enhancing performance across all missing-modality scenarios. Moreover, ADN's cross-modal generation offers improved recognition even in full-modality contexts. Our approach achieves state-of-the-art results on the IEMOCAP and MIntRec benchmarks, demonstrating its effectiveness in both missing and complete modality scenarios.
Related papers
- AMM-Diff: Adaptive Multi-Modality Diffusion Network for Missing Modality Imputation [2.8498944632323755]
In clinical practice, full imaging is not always feasible, often due to complex acquisition protocols, stringent privacy regulations, or specific clinical needs.<n>A promising solution is missing data imputation, where absent modalities are generated from available ones.<n>We propose an Adaptive Multi-Modality Diffusion Network (AMM-Diff), a novel diffusion-based generative model capable of handling any number of input modalities and generating the missing ones.
arXiv Detail & Related papers (2025-01-22T12:29:33Z) - Modality Unified Attack for Omni-Modality Person Re-Identification [16.624135145315673]
We propose a novel Modality Unified Attack method to train adversarial generators to attack different omni-modality models.<n>Experiments show that our method can effectively attack the omni-modality re-id models, achieving 55.9%, 24.4%, 49.0% and 62.7% mean mAP Drop Rate.
arXiv Detail & Related papers (2025-01-22T09:54:43Z) - Asynchronous Multimodal Video Sequence Fusion via Learning Modality-Exclusive and -Agnostic Representations [19.731611716111566]
We propose a Multimodal fusion approach for learning modality-Exclusive and modality-Agnostic representations.
We introduce a predictive self-attention module to capture reliable context dynamics within modalities.
A hierarchical cross-modal attention module is designed to explore valuable element correlations among modalities.
A double-discriminator strategy is presented to ensure the production of distinct representations in an adversarial manner.
arXiv Detail & Related papers (2024-07-06T04:36:48Z) - Dealing with All-stage Missing Modality: Towards A Universal Model with Robust Reconstruction and Personalization [14.606035444283984]
Current approaches focus on developing models that handle modality-incomplete inputs during inference.
We propose a robust universal model with modality reconstruction and model personalization.
Our method has been extensively validated on two brain tumor segmentation benchmarks.
arXiv Detail & Related papers (2024-06-04T06:07:24Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - A Study of Dropout-Induced Modality Bias on Robustness to Missing Video
Frames for Audio-Visual Speech Recognition [53.800937914403654]
Advanced Audio-Visual Speech Recognition (AVSR) systems have been observed to be sensitive to missing video frames.
While applying the dropout technique to the video modality enhances robustness to missing frames, it simultaneously results in a performance loss when dealing with complete data input.
We propose a novel Multimodal Distribution Approximation with Knowledge Distillation (MDA-KD) framework to reduce over-reliance on the audio modality.
arXiv Detail & Related papers (2024-03-07T06:06:55Z) - Exploring Missing Modality in Multimodal Egocentric Datasets [89.76463983679058]
We introduce a novel concept -Missing Modality Token (MMT)-to maintain performance even when modalities are absent.
Our method mitigates the performance loss, reducing it from its original $sim 30%$ drop to only $sim 10%$ when half of the test set is modal-incomplete.
arXiv Detail & Related papers (2024-01-21T11:55:42Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID) is an important and challenging task in intelligent video surveillance.
Existing methods mainly focus on learning a shared feature space to reduce the modality discrepancy between visible and infrared modalities.
We present a novel mutual information and modality consensus network, namely CMInfoNet, to extract modality-invariant identity features.
arXiv Detail & Related papers (2023-08-29T06:55:42Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.