DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
- URL: http://arxiv.org/abs/2507.05649v2
- Date: Mon, 14 Jul 2025 14:12:59 GMT
- Title: DESIGN: Encrypted GNN Inference via Server-Side Input Graph Pruning
- Authors: Kaixiang Zhao, Joseph Yousry Attalla, Qian Lou, Yushun Dong,
- Abstract summary: DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing) is a novel framework for efficient encrypted GNN inference.<n>Our framework achieves significant performance gains through a hierarchical optimization strategy executed entirely on the server.
- Score: 21.652233892742366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have achieved state-of-the-art performance in various graph-based learning tasks. However, enabling privacy-preserving GNNs in encrypted domains, such as under Fully Homomorphic Encryption (FHE), typically incurs substantial computational overhead, rendering real-time and privacy-preserving inference impractical. In this work, we propose DESIGN (EncrypteD GNN Inference via sErver-Side Input Graph pruNing), a novel framework for efficient encrypted GNN inference. DESIGN tackles the critical efficiency limitations of existing FHE GNN approaches, which often overlook input data redundancy and apply uniform computational strategies. Our framework achieves significant performance gains through a hierarchical optimization strategy executed entirely on the server: first, FHE-compatible node importance scores (based on encrypted degree statistics) are computed from the encrypted graph. These scores then guide a homomorphic partitioning process, generating multi-level importance masks directly under FHE. This dynamically generated mask facilitates both input graph pruning (by logically removing unimportant elements) and a novel adaptive polynomial activation scheme, where activation complexity is tailored to node importance levels. Empirical evaluations demonstrate that DESIGN substantially accelerates FHE GNN inference compared to state-of-the-art methods while maintaining competitive model accuracy, presenting a robust solution for secure graph analytics. Our implementation is publicly available at https://github.com/LabRAI/DESIGN.
Related papers
- Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning [17.31465642587528]
Graph neural networks (GNNs) have emerged as a powerful framework for a wide range of node-level graph learning tasks.<n>In this paper, we leverage a statistically grounded method, one-hot graph encoder embedding (GEE), to generate high-quality initial node features.<n>We demonstrate its effectiveness through extensive simulations and real-world experiments across both unsupervised and supervised settings.
arXiv Detail & Related papers (2025-07-15T21:01:54Z) - OMEGA: A Low-Latency GNN Serving System for Large Graphs [8.51634655687174]
Graph Neural Networks (GNNs) have been widely adopted for their ability to compute expressive node representations in graph datasets.<n>Existing approximation techniques in training can mitigate the overheads but, in serving, still lead to high latency and/or accuracy loss.<n>We propose OMEGA, a system that enables low-latency GNN serving for large graphs with minimal accuracy loss.
arXiv Detail & Related papers (2025-01-15T03:14:18Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
We learn nodal Adjacency Spectral Embeddings (ASE) from graph inputs.<n>LASE is interpretable, parameter efficient, robust to inputs with unobserved edges.<n>LASE layers combine Graph Convolutional Network (GCN) and fully-connected Graph Attention Network (GAT) modules.
arXiv Detail & Related papers (2024-12-23T17:35:19Z) - Efficient Graph Similarity Computation with Alignment Regularization [7.143879014059894]
Graph similarity computation (GSC) is a learning-based prediction task using Graph Neural Networks (GNNs)
We show that high-quality learning can be attained with a simple yet powerful regularization technique, which we call the Alignment Regularization (AReg)
In the inference stage, the graph-level representations learned by the GNN encoder are directly used to compute the similarity score without using AReg again to speed up inference.
arXiv Detail & Related papers (2024-06-21T07:37:28Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Robust Graph Neural Networks using Weighted Graph Laplacian [1.8292714902548342]
Graph neural network (GNN) is vulnerable to noise and adversarial attacks in input data.
We propose a generic framework for robustifying GNN known as Weighted Laplacian GNN (RWL-GNN)
arXiv Detail & Related papers (2022-08-03T05:36:35Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.