From Motion to Meaning: Biomechanics-Informed Neural Network for Explainable Cardiovascular Disease Identification
- URL: http://arxiv.org/abs/2507.05783v1
- Date: Tue, 08 Jul 2025 08:43:05 GMT
- Title: From Motion to Meaning: Biomechanics-Informed Neural Network for Explainable Cardiovascular Disease Identification
- Authors: Comte Valentin, Gemma Piella, Mario Ceresa, Miguel A. Gonzalez Ballester,
- Abstract summary: We utilize the energy strain formulation of Neo-Hookean material to model cardiac tissue deformations.<n>We estimate the local strains within the moving heart and extract a detailed set of features used for cardiovascular disease classification.
- Score: 1.1142444517901016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiac diseases are among the leading causes of morbidity and mortality worldwide, which requires accurate and timely diagnostic strategies. In this study, we introduce an innovative approach that combines deep learning image registration with physics-informed regularization to predict the biomechanical properties of moving cardiac tissues and extract features for disease classification. We utilize the energy strain formulation of Neo-Hookean material to model cardiac tissue deformations, optimizing the deformation field while ensuring its physical and biomechanical coherence. This explainable approach not only improves image registration accuracy, but also provides insights into the underlying biomechanical processes of the cardiac tissues. Evaluation on the Automated Cardiac Diagnosis Challenge (ACDC) dataset achieved Dice scores of 0.945 for the left ventricular cavity, 0.908 for the right ventricular cavity, and 0.905 for the myocardium. Subsequently, we estimate the local strains within the moving heart and extract a detailed set of features used for cardiovascular disease classification. We evaluated five classification algorithms, Logistic Regression, Multi-Layer Perceptron, Support Vector Classifier, Random Forest, and Nearest Neighbour, and identified the most relevant features using a feature selection algorithm. The best performing classifier obtained a classification accuracy of 98% in the training set and 100% in the test set of the ACDC dataset. By integrating explainable artificial intelligence, this method empowers clinicians with a transparent understanding of the model's predictions based on cardiac mechanics, while also significantly improving the accuracy and reliability of cardiac disease diagnosis, paving the way for more personalized and effective patient care.
Related papers
- Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG [40.407824759778784]
PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
arXiv Detail & Related papers (2025-06-24T17:19:39Z) - Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
We present a cardiac sensing foundation model (CSFM) that learns unified representations from vast, heterogeneous health records.<n>Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets.<n> CSFM consistently outperforms traditional one-modal-one-task approaches.
arXiv Detail & Related papers (2025-06-23T20:58:12Z) - Patient-Specific Dynamic Digital-Physical Twin for Coronary Intervention Training: An Integrated Mixed Reality Approach [33.92599418560439]
Existing training systems lack accurate simulation of cardiac physiological dynamics.<n>This study develops a comprehensive dynamic cardiac model research framework based on 4D-CTA.
arXiv Detail & Related papers (2025-05-16T06:13:55Z) - ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
We propose ArrhythmiNet V1 and V2, optimized for efficient, real-time arrhythmia classification on edge devices.<n>Inspired by MobileNet's depthwise separable convolutional design, these models maintain memory footprints of just 302.18 KB and 157.76 KB, respectively.<n>Our findings demonstrate the feasibility of combining interpretability, predictive accuracy, and computational efficiency in practical, wearable, and embedded ECG monitoring systems.
arXiv Detail & Related papers (2025-04-30T18:22:45Z) - Stroke Disease Classification Using Machine Learning with Feature Selection Techniques [1.6044444452278062]
Heart disease remains a leading cause of morbidity and mortality worldwide.<n>We have developed a novel voting system with feature selection techniques to advance heart disease classification.<n>XGBoost demonstrated exceptional performance, achieving 99% accuracy, precision, F1-Score, 98% recall, and 100% ROC AUC.
arXiv Detail & Related papers (2025-04-01T07:16:49Z) - Congenital Heart Disease Classification Using Phonocardiograms: A Scalable Screening Tool for Diverse Environments [34.10187730651477]
Congenital heart disease (CHD) is a critical condition that demands early detection.<n>This study presents a deep learning model designed to detect CHD using phonocardiogram (PCG) signals.<n>We evaluated our model on several datasets, including the primary dataset from Bangladesh.
arXiv Detail & Related papers (2025-03-28T05:47:44Z) - CardioTabNet: A Novel Hybrid Transformer Model for Heart Disease Prediction using Tabular Medical Data [0.46581008529871043]
Our study utilizes the open-source dataset for heart disease prediction with 1190 instances and 11 features.<n>Ten machine-learning models were used to predict heart disease using selected features.<n>The top downstream model (a hyper-tuned ExtraTree) achieved an average accuracy rate of 94.1% and an average Area Under Curve (AUC) of 95.0%.
arXiv Detail & Related papers (2025-03-22T06:17:08Z) - Leveraging Cardiovascular Simulations for In-Vivo Prediction of Cardiac Biomarkers [43.17768785084301]
We train an amortized neural posterior estimator on a newly built large dataset of cardiac simulations.<n>We incorporate elements modeling effects to better align simulated data with real-world measurements.<n>The proposed framework can further integrate in-vivo data sources to refine its predictive capabilities on real-world data.
arXiv Detail & Related papers (2024-12-23T13:05:17Z) - Advanced Neural Network Architecture for Enhanced Multi-Lead ECG Arrhythmia Detection through Optimized Feature Extraction [0.0]
Arrhythmia, characterized by irregular heart rhythms, presents formidable diagnostic challenges.
This study introduces an innovative approach utilizing deep learning techniques to address the complexities of arrhythmia classification.
arXiv Detail & Related papers (2024-04-13T19:56:15Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Digital twinning of cardiac electrophysiology models from the surface
ECG: a geodesic backpropagation approach [39.36827689390718]
We introduce a novel method, Geodesic-BP, to solve the inverse eikonal problem.
We show that Geodesic-BP can reconstruct a simulated cardiac activation with high accuracy in a synthetic test case.
Given the future shift towards personalized medicine, Geodesic-BP has the potential to help in future functionalizations of cardiac models.
arXiv Detail & Related papers (2023-08-16T14:57:12Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
In primary diagnosis and analysis of heart defects, an ECG signal plays a significant role.
This paper presents a model for the prediction of ventricular tachycardia arrhythmia using noise filtering, a unique set of ECG features, and a machine learning-based classifier model.
arXiv Detail & Related papers (2021-12-24T05:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.