Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG
- URL: http://arxiv.org/abs/2506.20683v1
- Date: Tue, 24 Jun 2025 17:19:39 GMT
- Title: Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG
- Authors: Alexander Selivanov, Philip Müller, Özgün Turgut, Nil Stolt-Ansó, Daniel Rückert,
- Abstract summary: PTACL (Patient and Temporal Alignment Contrastive Learning) is a multimodal contrastive learning framework that enhances ECG representations by integrating-temporal information from CMR.<n>We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank.<n>Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG.
- Score: 40.407824759778784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An electrocardiogram (ECG) is a widely used, cost-effective tool for detecting electrical abnormalities in the heart. However, it cannot directly measure functional parameters, such as ventricular volumes and ejection fraction, which are crucial for assessing cardiac function. Cardiac magnetic resonance (CMR) is the gold standard for these measurements, providing detailed structural and functional insights, but is expensive and less accessible. To bridge this gap, we propose PTACL (Patient and Temporal Alignment Contrastive Learning), a multimodal contrastive learning framework that enhances ECG representations by integrating spatio-temporal information from CMR. PTACL uses global patient-level contrastive loss and local temporal-level contrastive loss. The global loss aligns patient-level representations by pulling ECG and CMR embeddings from the same patient closer together, while pushing apart embeddings from different patients. Local loss enforces fine-grained temporal alignment within each patient by contrasting encoded ECG segments with corresponding encoded CMR frames. This approach enriches ECG representations with diagnostic information beyond electrical activity and transfers more insights between modalities than global alignment alone, all without introducing new learnable weights. We evaluate PTACL on paired ECG-CMR data from 27,951 subjects in the UK Biobank. Compared to baseline approaches, PTACL achieves better performance in two clinically relevant tasks: (1) retrieving patients with similar cardiac phenotypes and (2) predicting CMR-derived cardiac function parameters, such as ventricular volumes and ejection fraction. Our results highlight the potential of PTACL to enhance non-invasive cardiac diagnostics using ECG. The code is available at: https://github.com/alsalivan/ecgcmr
Related papers
- Sensing Cardiac Health Across Scenarios and Devices: A Multi-Modal Foundation Model Pretrained on Heterogeneous Data from 1.7 Million Individuals [36.08910150609342]
We present a cardiac sensing foundation model (CSFM) that learns unified representations from vast, heterogeneous health records.<n>Our model is pretrained on an innovative multi-modal integration of data from multiple large-scale datasets.<n> CSFM consistently outperforms traditional one-modal-one-task approaches.
arXiv Detail & Related papers (2025-06-23T20:58:12Z) - ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
We propose ArrhythmiNet V1 and V2, optimized for efficient, real-time arrhythmia classification on edge devices.<n>Inspired by MobileNet's depthwise separable convolutional design, these models maintain memory footprints of just 302.18 KB and 157.76 KB, respectively.<n>Our findings demonstrate the feasibility of combining interpretability, predictive accuracy, and computational efficiency in practical, wearable, and embedded ECG monitoring systems.
arXiv Detail & Related papers (2025-04-30T18:22:45Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Deep Learning for Automatic Strain Quantification in Arrhythmogenic
Right Ventricular Cardiomyopathy [0.0]
Quantification of cardiac motion with cine Cardiac Magnetic Resonance Imaging (CMRI) is an integral part of arrhythmogenic right ventricular cardiomyopathy (ARVC) diagnosis.
We develop a method to automatically assess cardiac motion using Implicit Neural Representations (INRs) and a deep learning approach.
Our results show that inter-slice alignment and generation of super-resolved volumes combined with joint analysis of the two cardiac views, notably improves registration performance.
arXiv Detail & Related papers (2023-11-24T12:55:36Z) - Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging [9.77594028637426]
We present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG.<n>Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations.
arXiv Detail & Related papers (2023-08-09T10:05:11Z) - Multi-scale Cross-restoration Framework for Electrocardiogram Anomaly
Detection [33.48389041651675]
Electrocardiogram (ECG) is a widely used diagnostic tool for detecting heart conditions.
Rare cardiac diseases may be underdiagnosed using traditional ECG analysis, considering that no training dataset can exhaust all possible cardiac disorders.
This paper proposes using anomaly detection to identify any unhealthy status, with normal ECGs solely for training.
arXiv Detail & Related papers (2023-08-03T09:16:57Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - CardioGAN: Attentive Generative Adversarial Network with Dual
Discriminators for Synthesis of ECG from PPG [25.305949034527202]
Electrocardiogram (ECG) is the electrical measurement of cardiac activity.
Photoplethysmogram ( PPG) is the optical measurement of changes in blood circulation.
We propose CardioGAN, an adversarial model which takes PPG as input and generates ECG as output.
arXiv Detail & Related papers (2020-09-30T20:49:30Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.