Improving Robustness of Foundation Models in Domain Adaptation with Soup-Adapters
- URL: http://arxiv.org/abs/2507.05807v1
- Date: Tue, 08 Jul 2025 09:26:10 GMT
- Title: Improving Robustness of Foundation Models in Domain Adaptation with Soup-Adapters
- Authors: Marco Roschkowski,
- Abstract summary: We show that by training multiple independent adapters and averaging their outputs, the new model has a higher performance and is more robust to distribution shifts compared to any individual adapter.<n>This is also the first study to explore CLIP adapter-style techniques for DINOv2 and to directly compare them with CLIP in this setting.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we tackle two fundamental problems in few-shot domain adaptation of foundation models. First, hyperparameter tuning is often impractical due to the lack of large validation datasets. Second, model robustness under distribution shifts where test time data deviates slightly from training distributions, remains a concern. We show that by training multiple independent adapters and averaging their outputs, the new model has a higher performance and is more robust to distribution shifts compared to any individual adapter. This improvement holds even when the adapters are trained with diverse hyperparameters sampled from a wide range, resulting in varied individual performance. Consequently, our method addresses both of the problems described above. The ensemble is also significantly less sensitive to the residual ratio, a critical hyperparameter of CLIP-Adapter. Since the ensemble can be reparameterized to a single adapter again using a principled concatenation of the parameters, we refer to our method as Soup-Adapter. This is also the first study to explore CLIP adapter-style techniques for DINOv2 and to directly compare them with CLIP in this setting.
Related papers
- Low-Rank Adaptation Secretly Imitates Differentially Private SGD [5.359060261460183]
We show theoretically that low-rank adaptation is equivalent to fine-tuning adapters with noisy batch gradients.<n>We also quantify the variance of the injected noise as a decreasing function of adaptation rank.<n>Low-rank adaptation provides robustness to membership inference attacks w.r.t the fine-tuning data.
arXiv Detail & Related papers (2024-09-26T04:56:49Z) - Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning [55.384428765798496]
New data exhibits a long-tailed distribution, such as e-commerce platform reviews.
This necessitates continuous model learning imbalanced data without forgetting.
We introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL.
arXiv Detail & Related papers (2024-09-11T17:52:00Z) - Hadamard Adapter: An Extreme Parameter-Efficient Adapter Tuning Method for Pre-trained Language Models [108.08773541490191]
Pre-trained Language models (PLMs) have a huge amount of parameters, fine-tuning them is often expensive and time consuming.
It is necessary to adopt a parameter-efficient approach to reduce parameters of PLMs in fine-tuning without compromising their performance in downstream tasks.
In this paper, we design a novel adapter which only acts on self-attention outputs in PLMs.
arXiv Detail & Related papers (2024-07-04T18:21:28Z) - Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning [30.251155072822055]
Prototype-based HyperAdapter (PHA) is a novel framework built on the adapter-tuning and hypernetwork.
It introduces an instance-dense retriever and prototypical hypernetwork to generate conditional modules in a sample-efficient manner.
We show that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency.
arXiv Detail & Related papers (2023-10-18T02:42:17Z) - MerA: Merging Pretrained Adapters For Few-Shot Learning [71.44422347502409]
We propose textbftextttMerging Pretrained Adapters (MerA) that efficiently incorporates pretrained adapters to a single model through model fusion.
Experiments on two PLMs demonstrate that MerA substantial improvements compared to both single adapters and AdapterFusion.
arXiv Detail & Related papers (2023-08-30T12:10:17Z) - SparseAdapter: An Easy Approach for Improving the Parameter-Efficiency
of Adapters [96.52807311742198]
We re-examine the parameter-efficiency of Adapters through the lens of network pruning.
We find that SparseAdapter can achieve comparable or better performance than standard Adapters when the sparse ratio reaches up to 80%.
arXiv Detail & Related papers (2022-10-09T15:28:48Z) - AdaMix: Mixture-of-Adapter for Parameter-efficient Tuning of Large
Language Models [119.7093605087114]
Fine-tuning large-scale pre-trained language models to downstream tasks require updating hundreds of millions of parameters.
This not only increases the serving cost to store a large copy of the model weights for every task, but also exhibits instability during few-shot task adaptation.
We introduce a new mechanism to improve adapter capacity without increasing parameters or computational cost by two key techniques.
arXiv Detail & Related papers (2022-05-24T23:41:22Z) - AdapterBias: Parameter-efficient Token-dependent Representation Shift
for Adapters in NLP Tasks [55.705355299065474]
Transformer-based pre-trained models with millions of parameters require large storage.
Recent approaches tackle this shortcoming by training adapters, but these approaches still require a relatively large number of parameters.
In this study, AdapterBias, a surprisingly simple yet effective adapter architecture, is proposed.
arXiv Detail & Related papers (2022-04-30T16:49:41Z) - On the Effectiveness of Adapter-based Tuning for Pretrained Language
Model Adaptation [36.37565646597464]
adapter-based tuning works by adding light-weight adapter modules to a pretrained language model (PrLM)
It adds only a few trainable parameters per new task, allowing a high degree of parameter sharing.
We demonstrate that adapter-based tuning outperforms fine-tuning on low-resource and cross-lingual tasks.
arXiv Detail & Related papers (2021-06-06T16:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.