Constella: Supporting Storywriters' Interconnected Character Creation through LLM-based Multi-Agents
- URL: http://arxiv.org/abs/2507.05820v1
- Date: Tue, 08 Jul 2025 09:39:02 GMT
- Title: Constella: Supporting Storywriters' Interconnected Character Creation through LLM-based Multi-Agents
- Authors: Syemin Park, Soobin Park, Youn-kyung Lim,
- Abstract summary: Constella is a multi-agent tool that supports storywriters' interconnected character creation process.<n>Our 7-8 day deployment study with storywriters shows that Constella enabled the creation of expansive communities composed of related characters.<n>We conclude by discussing how multi-agent interactions can help distribute writers' attention and effort across the character cast.
- Score: 7.537475180985097
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Creating a cast of characters by attending to their relational dynamics is a critical aspect of most long-form storywriting. However, our formative study (N=14) reveals that writers struggle to envision new characters that could influence existing ones, to balance similarities and differences among characters, and to intricately flesh out their relationships. Based on these observations, we designed Constella, an LLM-based multi-agent tool that supports storywriters' interconnected character creation process. Constella suggests related characters (FRIENDS DISCOVERY feature), reveals the inner mindscapes of several characters simultaneously (JOURNALS feature), and manifests relationships through inter-character responses (COMMENTS feature). Our 7-8 day deployment study with storywriters (N=11) shows that Constella enabled the creation of expansive communities composed of related characters, facilitated the comparison of characters' thoughts and emotions, and deepened writers' understanding of character relationships. We conclude by discussing how multi-agent interactions can help distribute writers' attention and effort across the character cast.
Related papers
- CharacterBox: Evaluating the Role-Playing Capabilities of LLMs in Text-Based Virtual Worlds [74.02480671181685]
Role-playing is a crucial capability of Large Language Models (LLMs)<n>Current evaluation methods fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing.<n>We propose CharacterBox, a simulation sandbox designed to generate situational fine-grained character behavior trajectories.
arXiv Detail & Related papers (2024-12-07T12:09:35Z) - BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
We define two tasks: character description, which generates a brief factual profile, and character analysis, which offers an in-depth interpretation.
We introduce the BookWorm dataset, pairing books from the Gutenberg Project with human-written descriptions and analyses.
Our findings show that retrieval-based approaches outperform hierarchical ones in both tasks.
arXiv Detail & Related papers (2024-10-14T10:55:58Z) - Agents' Room: Narrative Generation through Multi-step Collaboration [54.98886593802834]
We propose a generation framework inspired by narrative theory that decomposes narrative writing into subtasks tackled by specialized agents.<n>We show that Agents' Room generates stories preferred by expert evaluators over those produced by baseline systems.
arXiv Detail & Related papers (2024-10-03T15:44:42Z) - Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.<n>Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.<n>We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - Crafting Customisable Characters with LLMs: Introducing SimsChat, a Persona-Driven Role-Playing Agent Framework [22.47800724123694]
Large Language Models (LLMs) demonstrate remarkable ability to comprehend instructions and generate human-like text.<n>We introduce the Customisable Conversation Agent Framework, which employs LLMs to simulate real-world characters.<n>We present SimsChat, a freely customisable role-playing agent incorporating various realistic settings.
arXiv Detail & Related papers (2024-06-25T22:44:17Z) - CHIRON: Rich Character Representations in Long-Form Narratives [98.273323001781]
We propose CHIRON, a new character sheet' based representation that organizes and filters textual information about characters.<n>We validate CHIRON via the downstream task of masked-character prediction, where our experiments show CHIRON is better and more flexible than comparable summary-based baselines.<n> metrics derived from CHIRON can be used to automatically infer character-centricity in stories, and that these metrics align with human judgments.
arXiv Detail & Related papers (2024-06-14T17:23:57Z) - Large Language Models Fall Short: Understanding Complex Relationships in
Detective Narratives [21.297972871264744]
We introduce a new benchmark, Conan, designed for extracting and analysing intricate character relation graphs from detective narratives.
Specifically, we designed hierarchical relationship categories and manually extracted and annotated role-oriented relationships from the perspectives of various characters.
Our experiments with advanced Large Language Models (LLMs) like GPT-3.5, GPT-4, and Llama2 reveal their limitations in inferencing complex relationships and handling longer narratives.
arXiv Detail & Related papers (2024-02-16T19:59:45Z) - Thespian: Multi-Character Text Role-Playing Game Agents [8.19666118455293]
We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters.
We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt.
We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.
arXiv Detail & Related papers (2023-08-03T16:53:53Z) - Large Language Models Meet Harry Potter: A Bilingual Dataset for
Aligning Dialogue Agents with Characters [70.84938803753062]
We introduce the Harry Potter Dialogue dataset, designed to advance the study of dialogue agents and character alignment.
The dataset encompasses all dialogue sessions (in both English and Chinese) from the Harry Potter series.
It is annotated with vital background information, including dialogue scenes, speakers, character relationships, and attributes.
arXiv Detail & Related papers (2022-11-13T10:16:39Z) - "Let Your Characters Tell Their Story": A Dataset for Character-Centric
Narrative Understanding [31.803481510886378]
We present LiSCU -- a new dataset of literary pieces and their summaries paired with descriptions of characters that appear in them.
We also introduce two new tasks on LiSCU: Character Identification and Character Description Generation.
Our experiments with several pre-trained language models adapted for these tasks demonstrate that there is a need for better models of narrative comprehension.
arXiv Detail & Related papers (2021-09-12T06:12:55Z) - Telling Stories through Multi-User Dialogue by Modeling Character
Relations [14.117921448623342]
This paper explores character-driven story continuation, in which the story emerges through characters' first- and second-person narration as well as dialogue.
We hypothesize that a multi-task model that trains on character dialogue plus character relationship information improves transformer-based story continuation.
A series of ablations lend evidence to our hypothesis, showing that our multi-task model using character relationships improves story continuation accuracy over strong baselines.
arXiv Detail & Related papers (2021-05-31T15:39:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.