Communication-Efficient Module-Wise Federated Learning for Grasp Pose Detection in Cluttered Environments
- URL: http://arxiv.org/abs/2507.05861v1
- Date: Tue, 08 Jul 2025 10:40:49 GMT
- Title: Communication-Efficient Module-Wise Federated Learning for Grasp Pose Detection in Cluttered Environments
- Authors: Woonsang Kang, Joohyung Lee, Seungjun Kim, Jungchan Cho, Yoonseon Oh,
- Abstract summary: We propose a module-wise Federated Learning (FL) framework for Grasp pose detection.<n>FL offers a privacy-preserving solution, but its application to GPD is hindered by the substantial communication overhead of large models.<n>Our work presents a communication-efficient framework for training robust, generalized GPD models in a decentralized manner.
- Score: 10.63791848873399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grasp pose detection (GPD) is a fundamental capability for robotic autonomy, but its reliance on large, diverse datasets creates significant data privacy and centralization challenges. Federated Learning (FL) offers a privacy-preserving solution, but its application to GPD is hindered by the substantial communication overhead of large models, a key issue for resource-constrained robots. To address this, we propose a novel module-wise FL framework that begins by analyzing the learning dynamics of the GPD model's functional components. This analysis identifies slower-converging modules, to which our framework then allocates additional communication effort. This is realized through a two-phase process: a standard full-model training phase is followed by a communication-efficient phase where only the identified subset of slower-converging modules is trained and their partial updates are aggregated. Extensive experiments on the GraspNet-1B dataset demonstrate that our method outperforms standard FedAvg and other baselines, achieving higher accuracy for a given communication budget. Furthermore, real-world experiments on a physical robot validate our approach, showing a superior grasp success rate compared to baseline methods in cluttered scenes. Our work presents a communication-efficient framework for training robust, generalized GPD models in a decentralized manner, effectively improving the trade-off between communication cost and model performance.
Related papers
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Hierarchical and Decoupled BEV Perception Learning Framework for Autonomous Driving [52.808273563372126]
This paper proposes a novel hierarchical BEV perception paradigm, aiming to provide a library of fundamental perception modules and user-friendly graphical interface.
We conduct the Pretrain-Finetune strategy to effectively utilize large scale public datasets and streamline development processes.
We also present a Multi-Module Learning (MML) approach, enhancing performance through synergistic and iterative training of multiple models.
arXiv Detail & Related papers (2024-07-17T11:17:20Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large language models (LLMs) have driven profound transformations in wireless networks.<n>Within wireless environments, the training of LLMs faces significant challenges related to security and privacy.<n>This paper presents a systematic analysis of the training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Integrating Pre-Trained Language Model with Physical Layer Communications [19.20941153929975]
We introduce a practical ondevice AI communication framework, integrated with physical layer (PHY) communication functions.
Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities.
arXiv Detail & Related papers (2024-02-18T17:27:51Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources.
We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities.
arXiv Detail & Related papers (2023-12-23T08:18:22Z) - Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning (FL) is a framework for performing a learning task in an edge computing scenario.
We propose a communication-efficient Decentralised Federated Learning (DFL) algorithm able to cope with them.
Our solution allows devices communicating only with their direct neighbours to train an accurate model.
arXiv Detail & Related papers (2023-12-07T18:24:19Z) - An Efficient Federated Learning Framework for Training Semantic
Communication System [29.593406320684448]
Most semantic communication systems are built upon advanced deep learning models.
Due to privacy and security concerns, the transmission of data is restricted.
We introduce a mechanism to aggregate the global model from clients, called FedLol.
arXiv Detail & Related papers (2023-10-20T02:45:20Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.