論文の概要: Enhancing the Interpretability of Rule-based Explanations through Information Retrieval
- arxiv url: http://arxiv.org/abs/2507.05976v1
- Date: Tue, 08 Jul 2025 13:32:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:38.136685
- Title: Enhancing the Interpretability of Rule-based Explanations through Information Retrieval
- Title(参考訳): 情報検索によるルールベース説明の解釈可能性の向上
- Authors: Alessandro Umbrico, Guido Bologna, Luca Coraci, Francesca Fracasso, Silvia Gola, Gabriella Cortellessa,
- Abstract要約: 本稿では、説明可能なAIに基づく予測の解釈可能性を改善するための属性ベースのアプローチを提案する。
提案手法は,情報検索手法の標準指標を用いて,ルールベース予測モデルにおける属性の統計的解析を行う。
- 参考スコア(独自算出の注目度): 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The lack of transparency of data-driven Artificial Intelligence techniques limits their interpretability and acceptance into healthcare decision-making processes. We propose an attribution-based approach to improve the interpretability of Explainable AI-based predictions in the specific context of arm lymphedema's risk assessment after lymph nodal radiotherapy in breast cancer. The proposed method performs a statistical analysis of the attributes in the rule-based prediction model using standard metrics from Information Retrieval techniques. This analysis computes the relevance of each attribute to the prediction and provides users with interpretable information about the impact of risk factors. The results of a user study that compared the output generated by the proposed approach with the raw output of the Explainable AI model suggested higher levels of interpretability and usefulness in the context of predicting lymphedema risk.
- Abstract(参考訳): データ駆動型人工知能技術の透明性の欠如は、その解釈可能性と医療意思決定プロセスへの受け入れを制限する。
乳がんにおける結節放射線治療後の肺リンパ腫のリスク評価の特定の文脈における説明可能なAIによる予測の解釈可能性を改善するための属性に基づくアプローチを提案する。
提案手法は,情報検索手法の標準指標を用いて,ルールベース予測モデルにおける属性の統計的解析を行う。
この分析は、各属性の予測との関係を計算し、リスク要因の影響に関する解釈可能な情報を提供する。
提案手法とExplainable AIモデルの生の出力を比較したユーザスタディの結果, リンパ腫リスク予測の文脈において, 高い解釈性と有用性が示唆された。
関連論文リスト
- LucidAtlas$: Learning Uncertainty-Aware, Covariate-Disentangled, Individualized Atlas Representations [30.072620549688953]
空間的に異なる情報を表現できるアプローチであるtexttLucidAtlas$を開発した。
本研究は, 科学的発見の進展において, バイコンストラクション解釈モデルが重要な役割を担っていることを示すものである。
論文 参考訳(メタデータ) (2025-02-12T14:36:25Z) - Explainable AI for Classifying UTI Risk Groups Using a Real-World Linked EHR and Pathology Lab Dataset [0.47517735516852333]
尿路感染症(UTIs)の特徴付けにリンクEHRデータセットを活用する
臨床専門知識からUTIリスク推定フレームワークを導入し,個別の患者タイムラインにまたがってUTIリスクを推定する。
リスクグループ間で臨床および人口統計学的予測値の違いが判明した。
論文 参考訳(メタデータ) (2024-11-26T18:10:51Z) - Controllable Edge-Type-Specific Interpretation in Multi-Relational Graph Neural Networks for Drug Response Prediction [6.798254568821052]
本稿では,がん治療薬の反応予測アルゴリズムであるCETExplainerを提案する。
制御可能なエッジタイプ固有の重み付け機構を導入し、予測モデルに対して微細で生物学的に意味のある説明を提供する。
実世界のデータセットに関する実証分析は、CETExplainerが優れた安定性を達成し、主要なアルゴリズムと比較して説明品質を向上させることを示した。
論文 参考訳(メタデータ) (2024-08-30T09:14:38Z) - Methodological Explainability Evaluation of an Interpretable Deep Learning Model for Post-Hepatectomy Liver Failure Prediction Incorporating Counterfactual Explanations and Layerwise Relevance Propagation: A Prospective In Silico Trial [13.171582596404313]
術前PHLF予測のための可変オートエンコーダ-多層パーセプトロン (VAE-MLP) モデルを開発した。
このモデルは、その意思決定メカニズムに関する洞察を提供するために、カウンターファクトアルとレイヤワイズ関連伝播(LRP)を統合した。
サイリコ臨床試験の3トラックの結果、AIの説明が提供されると、臨床医の予測精度と信頼性が向上した。
論文 参考訳(メタデータ) (2024-08-07T13:47:32Z) - Explainable AI for Malnutrition Risk Prediction from m-Health and
Clinical Data [3.093890460224435]
異種m-healthデータに基づく早期かつ説明可能な栄養失調リスク検出のための新しいAIフレームワークを提案する。
対象非依存および個人化予測を含む広範囲なモデル評価を行った。
また,グローバルモデル記述を抽出するベンチマークXAI法についても検討した。
論文 参考訳(メタデータ) (2023-05-31T08:07:35Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
線形および非線形共振の両方を扱う可変デコリレーション正規化器を用いた新しい手法を提案する。
我々は、モデル解釈可能性を高めるために、元の特徴に基づくアソシエーションルールマイニングを用いた新しい表現として、アソシエーションルールを採用する。
論文 参考訳(メタデータ) (2022-09-29T17:44:14Z) - Boosting the interpretability of clinical risk scores with intervention
predictions [59.22442473992704]
本稿では、今後の介入に関するモデルの仮定を明確に伝達する手段として、介入政策と有害事象リスクの合同モデルを提案する。
死亡確率などの典型的なリスクスコアと将来の介入確率スコアとを組み合わせることで、より解釈可能な臨床予測がもたらされることを示す。
論文 参考訳(メタデータ) (2022-07-06T19:49:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
強化学習におけるオフ政治評価は、医療や教育などの領域における将来の成果を改善するために観察データを使用する機会を提供する。
信頼区間のような従来の尺度は、ノイズ、限られたデータ、不確実性のために不十分である可能性がある。
我々は,人間専門家が政策評価評価評価の妥当性を分析できるように,ハイブリッドAIシステムとして機能する手法を開発した。
論文 参考訳(メタデータ) (2020-02-10T00:26:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。