Kernel Trace Distance: Quantum Statistical Metric between Measures through RKHS Density Operators
- URL: http://arxiv.org/abs/2507.06055v1
- Date: Tue, 08 Jul 2025 14:56:44 GMT
- Title: Kernel Trace Distance: Quantum Statistical Metric between Measures through RKHS Density Operators
- Authors: Arturo Castellanos, Anna Korba, Pavlo Mozharovskyi, Hicham Janati,
- Abstract summary: We introduce a novel distance between measures that compares them through a Schatten norm of their kernel covariance operators.<n>We show that this new distance is an integral probability metric that can be framed between a Maximum Mean Discrepancy (MMD) and a Wasserstein distance.
- Score: 11.899035547580201
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distances between probability distributions are a key component of many statistical machine learning tasks, from two-sample testing to generative modeling, among others. We introduce a novel distance between measures that compares them through a Schatten norm of their kernel covariance operators. We show that this new distance is an integral probability metric that can be framed between a Maximum Mean Discrepancy (MMD) and a Wasserstein distance. In particular, we show that it avoids some pitfalls of MMD, by being more discriminative and robust to the choice of hyperparameters. Moreover, it benefits from some compelling properties of kernel methods, that can avoid the curse of dimensionality for their sample complexity. We provide an algorithm to compute the distance in practice by introducing an extension of kernel matrix for difference of distributions that could be of independent interest. Those advantages are illustrated by robust approximate Bayesian computation under contamination as well as particle flow simulations.
Related papers
- Kernel Quantile Embeddings and Associated Probability Metrics [12.484632369259659]
We introduce the notion of kernel quantile embeddings (KQEs)<n>We use KQEs to construct a family of distances that: (i) are probability metrics under weaker kernel conditions than MMD; (ii) recover a kernelised form of the sliced Wasserstein distance; and (iii) can be efficiently estimated with near-linear cost.
arXiv Detail & Related papers (2025-05-26T18:27:17Z) - A Uniform Concentration Inequality for Kernel-Based Two-Sample Statistics [4.757470449749877]
We show that these metrics can be unified under a general framework of kernel-based two-sample statistics.<n>This paper establishes a novel uniform concentration inequality for the aforementioned kernel-based statistics.<n>As illustrative applications, we demonstrate how these bounds facilitate the component of error bounds for procedures such as distance covariance-based dimension reduction.
arXiv Detail & Related papers (2024-05-22T22:41:56Z) - Boosting the Power of Kernel Two-Sample Tests [4.07125466598411]
A kernel two-sample test based on the maximum mean discrepancy (MMD) is one of the most popular methods for detecting differences between two distributions over general metric spaces.
We propose a method to boost the power of the kernel test by combining MMD estimates over multiple kernels using their Mahalanobis distance.
arXiv Detail & Related papers (2023-02-21T14:14:30Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or (ii) control weak convergence to P.<n>In this article we derive new sufficient and necessary conditions to ensure (i) and (ii)<n>For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels.
arXiv Detail & Related papers (2022-09-26T16:41:16Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiff is a novel kernel-based measure for estimating distances between instances of structured data.
It accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution.
Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems.
arXiv Detail & Related papers (2021-09-29T22:54:17Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Schoenberg-Rao distances: Entropy-based and geometry-aware statistical
Hilbert distances [12.729120803225065]
We study a class of statistical Hilbert distances that we term the Schoenberg-Rao distances.
We derive novel closed-form distances between mixtures of Gaussian distributions.
Our method constitutes a practical alternative to Wasserstein distances and we illustrate its efficiency on a broad range of machine learning tasks.
arXiv Detail & Related papers (2020-02-19T18:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.