CAST-Phys: Contactless Affective States Through Physiological signals Database
- URL: http://arxiv.org/abs/2507.06080v1
- Date: Tue, 08 Jul 2025 15:20:24 GMT
- Title: CAST-Phys: Contactless Affective States Through Physiological signals Database
- Authors: Joaquim Comas, Alexander Joel Vera, Xavier Vives, Eleonora De Filippi, Alexandre Pereda, Federico Sukno,
- Abstract summary: The lack of affective multi-modal datasets remains a major bottleneck in developing accurate emotion recognition systems.<n>We present the Contactless Affective States Through Physiological Signals Database (CAST-Phys), a novel high-quality dataset capable of remote physiological emotion recognition.<n>Our analysis highlights the crucial role of physiological signals in realistic scenarios where facial expressions alone may not provide sufficient emotional information.
- Score: 74.28082880875368
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, affective computing and its applications have become a fast-growing research topic. Despite significant advancements, the lack of affective multi-modal datasets remains a major bottleneck in developing accurate emotion recognition systems. Furthermore, the use of contact-based devices during emotion elicitation often unintentionally influences the emotional experience, reducing or altering the genuine spontaneous emotional response. This limitation highlights the need for methods capable of extracting affective cues from multiple modalities without physical contact, such as remote physiological emotion recognition. To address this, we present the Contactless Affective States Through Physiological Signals Database (CAST-Phys), a novel high-quality dataset explicitly designed for multi-modal remote physiological emotion recognition using facial and physiological cues. The dataset includes diverse physiological signals, such as photoplethysmography (PPG), electrodermal activity (EDA), and respiration rate (RR), alongside high-resolution uncompressed facial video recordings, enabling the potential for remote signal recovery. Our analysis highlights the crucial role of physiological signals in realistic scenarios where facial expressions alone may not provide sufficient emotional information. Furthermore, we demonstrate the potential of remote multi-modal emotion recognition by evaluating the impact of individual and fused modalities, showcasing its effectiveness in advancing contactless emotion recognition technologies.
Related papers
- Emotion Detection in Older Adults Using Physiological Signals from Wearable Sensors [0.40964539027092906]
This work investigates an edge-based, non-obtrusive approach to emotion identification that uses only physiological signals obtained via wearable sensors.<n>We aim to study how well emotion recognition can be accomplished using simply physiological sensor data, without the requirement for cameras or intrusive facial analysis.<n>Our results validate the feasibility of this method, paving the way for privacy-preserving and efficient emotion recognition systems in real-world settings.
arXiv Detail & Related papers (2025-07-10T20:59:25Z) - Empathetic Conversational Agents: Utilizing Neural and Physiological Signals for Enhanced Empathetic Interactions [18.8995194180207]
Conversational agents (CAs) are revolutionizing human-computer interaction by evolving from text-based chatbots to empathetic digital humans (DHs) capable of rich emotional expressions.<n>This paper explores the integration of neural and physiological signals into the perception module of CAs to enhance empathetic interactions.
arXiv Detail & Related papers (2025-01-14T19:19:37Z) - Smile upon the Face but Sadness in the Eyes: Emotion Recognition based on Facial Expressions and Eye Behaviors [63.194053817609024]
We introduce eye behaviors as an important emotional cues for the creation of a new Eye-behavior-aided Multimodal Emotion Recognition dataset.
For the first time, we provide annotations for both Emotion Recognition (ER) and Facial Expression Recognition (FER) in the EMER dataset.
We specifically design a new EMERT architecture to concurrently enhance performance in both ER and FER.
arXiv Detail & Related papers (2024-11-08T04:53:55Z) - PHemoNet: A Multimodal Network for Physiological Signals [9.54382727022316]
We introduce PHemoNet, a fully hypercomplex network for multimodal emotion recognition from physiological signals.
The architecture comprises modality-specific encoders and a fusion module.
The proposed method outperforms current state-of-the-art models on the MAHNOB-HCI dataset.
arXiv Detail & Related papers (2024-09-13T21:14:27Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Emotion recognition based on multi-modal electrophysiology multi-head
attention Contrastive Learning [3.2536246345549538]
We propose ME-MHACL, a self-supervised contrastive learning-based multimodal emotion recognition method.
We apply the trained feature extractor to labeled electrophysiological signals and use multi-head attention mechanisms for feature fusion.
Our method outperformed existing benchmark methods in emotion recognition tasks and had good cross-individual generalization ability.
arXiv Detail & Related papers (2023-07-12T05:55:40Z) - A Survey on Physiological Signal Based Emotion Recognition [1.52292571922932]
Existing review papers on emotion recognition based on physiological signals surveyed only the regular steps involved in the workflow of emotion recognition.
This paper reviews the effect of inter-subject data variance on emotion recognition, important data annotation techniques for emotion recognition and their comparison, data preprocessing techniques for each physiological signal, data splitting techniques for improving the generalization of emotion recognition models and different multimodal fusion techniques and their comparison.
arXiv Detail & Related papers (2022-05-20T23:59:44Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.