Empathetic Conversational Agents: Utilizing Neural and Physiological Signals for Enhanced Empathetic Interactions
- URL: http://arxiv.org/abs/2501.08393v1
- Date: Tue, 14 Jan 2025 19:19:37 GMT
- Title: Empathetic Conversational Agents: Utilizing Neural and Physiological Signals for Enhanced Empathetic Interactions
- Authors: Nastaran Saffaryazdi, Tamil Selvan Gunasekaran, Kate Laveys, Elizabeth Broadbent, Mark Billinghurst,
- Abstract summary: Conversational agents (CAs) are revolutionizing human-computer interaction by evolving from text-based chatbots to empathetic digital humans (DHs) capable of rich emotional expressions.
This paper explores the integration of neural and physiological signals into the perception module of CAs to enhance empathetic interactions.
- Score: 18.8995194180207
- License:
- Abstract: Conversational agents (CAs) are revolutionizing human-computer interaction by evolving from text-based chatbots to empathetic digital humans (DHs) capable of rich emotional expressions. This paper explores the integration of neural and physiological signals into the perception module of CAs to enhance empathetic interactions. By leveraging these cues, the study aims to detect emotions in real-time and generate empathetic responses and expressions. We conducted a user study where participants engaged in conversations with a DH about emotional topics. The DH responded and displayed expressions by mirroring detected emotions in real-time using neural and physiological cues. The results indicate that participants experienced stronger emotions and greater engagement during interactions with the Empathetic DH, demonstrating the effectiveness of incorporating neural and physiological signals for real-time emotion recognition. However, several challenges were identified, including recognition accuracy, emotional transition speeds, individual personality effects, and limitations in voice tone modulation. Addressing these challenges is crucial for further refining Empathetic DHs and fostering meaningful connections between humans and artificial entities. Overall, this research advances human-agent interaction and highlights the potential of real-time neural and physiological emotion recognition in creating empathetic DHs.
Related papers
- Emotion Analysis on EEG Signal Using Machine Learning and Neural Network [0.0]
The main purpose of this study is to improve ways to improve emotion recognition performance using brain signals.
Various approaches to human-machine interaction technologies have been ongoing for a long time, and in recent years, researchers have had great success in automatically understanding emotion using brain signals.
arXiv Detail & Related papers (2023-07-09T09:50:34Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Disambiguating Affective Stimulus Associations for Robot Perception and
Dialogue [67.89143112645556]
We provide a NICO robot with the ability to learn the associations between a perceived auditory stimulus and an emotional expression.
NICO is able to do this for both individual subjects and specific stimuli, with the aid of an emotion-driven dialogue system.
The robot is then able to use this information to determine a subject's enjoyment of perceived auditory stimuli in a real HRI scenario.
arXiv Detail & Related papers (2021-03-05T20:55:48Z) - Emotion pattern detection on facial videos using functional statistics [62.997667081978825]
We propose a technique based on Functional ANOVA to extract significant patterns of face muscles movements.
We determine if there are time-related differences on expressions among emotional groups by using a functional F-test.
arXiv Detail & Related papers (2021-03-01T08:31:08Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - Prediction of Human Empathy based on EEG Cortical Asymmetry [0.0]
lateralization of brain oscillations at specific frequency bands is an important predictor of self-reported empathy scores.
Results could be employed in the development of brain-computer interfaces that assist people with difficulties in expressing or recognizing emotions.
arXiv Detail & Related papers (2020-05-06T13:49:56Z) - Generating Emotionally Aligned Responses in Dialogues using Affect
Control Theory [15.848210524718219]
Affect Control Theory (ACT) is a socio-mathematical model of emotions for human-human interactions.
We investigate how ACT can be used to develop affect-aware neural conversational agents.
arXiv Detail & Related papers (2020-03-07T19:31:08Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z) - Detecting Emotion Primitives from Speech and their use in discerning
Categorical Emotions [16.886826928295203]
Emotion plays an essential role in human-to-human communication, enabling us to convey feelings such as happiness, frustration, and sincerity.
This work investigated how emotion primitives can be used to detect categorical emotions such as happiness, disgust, contempt, anger, and surprise from neutral speech.
Results indicated that arousal, followed by dominance was a better detector of such emotions.
arXiv Detail & Related papers (2020-01-31T03:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.