論文の概要: A Single Merging Suffices: Recovering Server-based Learning Performance in Decentralized Learning
- arxiv url: http://arxiv.org/abs/2507.06542v1
- Date: Wed, 09 Jul 2025 04:56:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.473027
- Title: A Single Merging Suffices: Recovering Server-based Learning Performance in Decentralized Learning
- Title(参考訳): 分散学習におけるサーバベースの学習性能の回復
- Authors: Tongtian Zhu, Tianyu Zhang, Mingze Wang, Zhanpeng Zhou, Can Wang,
- Abstract要約: 我々は、いつ、どれだけの頻度でデバイスが同期するかを決定することを含む、時間とともに通信がスケジュールされるかを検討する。
単一のグローバルマージによって実装された最終段階における完全接続通信は、サーバベースのトレーニングのパフォーマンスに匹敵するほど十分であることがわかった。
- 参考スコア(独自算出の注目度): 17.386971981099588
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized learning provides a scalable alternative to traditional parameter-server-based training, yet its performance is often hindered by limited peer-to-peer communication. In this paper, we study how communication should be scheduled over time, including determining when and how frequently devices synchronize. Our empirical results show that concentrating communication budgets in the later stages of decentralized training markedly improves global generalization. Surprisingly, we uncover that fully connected communication at the final step, implemented by a single global merging, is sufficient to match the performance of server-based training. We further show that low communication in decentralized learning preserves the \textit{mergeability} of local models throughout training. Our theoretical contributions, which explains these phenomena, are first to establish that the globally merged model of decentralized SGD can converge faster than centralized mini-batch SGD. Technically, we novelly reinterpret part of the discrepancy among local models, which were previously considered as detrimental noise, as constructive components that accelerate convergence. This work challenges the common belief that decentralized learning generalizes poorly under data heterogeneity and limited communication, while offering new insights into model merging and neural network loss landscapes.
- Abstract(参考訳): 分散学習は従来のパラメータサーバベースのトレーニングに代わるスケーラブルな代替手段を提供するが、そのパフォーマンスはピアツーピア通信の制限によって妨げられることが多い。
本稿では,デバイスがいつ,どのくらいの頻度で同期するかを決定することを含む,時間とともに通信のスケジュールを決定する方法について検討する。
実証実験の結果,分散訓練後期におけるコミュニケーション予算の集中化は,グローバルな一般化を著しく向上させることが示された。
驚くべきことに、単一のグローバルマージによって実装された最終段階における完全接続通信は、サーバベースのトレーニングのパフォーマンスに匹敵するほど十分であることがわかった。
さらに、分散学習における低コミュニケーションは、訓練を通して局所モデルの「textit{mergeability}」を保っていることを示す。
これらの現象を説明する理論的貢献は、まず、分散化された分散SGDのグローバル統合モデルが、集中型ミニバッチSGDよりも早く収束できることを確立する。
技術的には,従来有害ノイズと考えられていた局所モデル間の不一致の一部を,収束を加速する構成成分として新たに再解釈する。
この研究は、分散学習がデータの不均一性と限られたコミュニケーションの下では不十分に一般化し、モデルマージとニューラルネットワークロスランドスケープに対する新たな洞察を提供するという一般的な信念に挑戦する。
関連論文リスト
- Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning(FL)は、エッジコンピューティングシナリオで学習タスクを実行するためのフレームワークである。
本稿では,コミュニケーション効率のよい分散フェデレート学習(DFL)アルゴリズムを提案する。
我々のソリューションは、デバイスが直接隣人とのみ通信し、正確なモデルを訓練することを可能にする。
論文 参考訳(メタデータ) (2023-12-07T18:24:19Z) - Scheduling and Communication Schemes for Decentralized Federated
Learning [0.31410859223862103]
勾配降下(SGD)アルゴリズムを用いた分散連合学習(DFL)モデルが導入された。
DFLの3つのスケジューリングポリシーがクライアントと並列サーバ間の通信のために提案されている。
その結果,提案した計画警察は,収束速度と最終グローバルモデルの両方に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2023-11-27T17:35:28Z) - Event-Triggered Decentralized Federated Learning over
Resource-Constrained Edge Devices [12.513477328344255]
Federated Learning (FL)は分散機械学習(ML)のための技術である
従来のFLアルゴリズムでは、エッジで訓練されたモデルを中央サーバに定期的に送信して集約する。
我々は、デバイスが協調的なコンセンサス形成を通じてモデルアグリゲーションを行う完全分散FLのための新しい手法を開発した。
論文 参考訳(メタデータ) (2022-11-23T00:04:05Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
本稿では,分散型(ピアツーピア)通信プロトコルであるDis-PFLにおいて,新たな個人化フェデレーション学習フレームワークを提案する。
Dis-PFLはパーソナライズされたスパースマスクを使用して、エッジ上のスパースローカルモデルをカスタマイズする。
本手法は,計算複雑性の異なる異種ローカルクライアントに容易に適応できることを実証する。
論文 参考訳(メタデータ) (2022-06-01T02:20:57Z) - Decentralized Event-Triggered Federated Learning with Heterogeneous
Communication Thresholds [12.513477328344255]
ネットワークグラフトポロジ上での非同期なイベントトリガーによるコンセンサス反復による分散モデルアグリゲーションのための新しい手法を提案する。
本手法は,分散学習とグラフコンセンサス文学における標準的な仮定の下で,グローバルな最適学習モデルを実現することを実証する。
論文 参考訳(メタデータ) (2022-04-07T20:35:37Z) - Finite-Time Consensus Learning for Decentralized Optimization with
Nonlinear Gossiping [77.53019031244908]
本稿では,非線形ゴシップ(NGO)に基づく分散学習フレームワークを提案する。
コミュニケーション遅延とランダム化チャットが学習にどう影響するかを解析することで,実践的なバリエーションの導出が可能となる。
論文 参考訳(メタデータ) (2021-11-04T15:36:25Z) - RelaySum for Decentralized Deep Learning on Heterogeneous Data [71.36228931225362]
分散機械学習では、労働者はローカルデータのモデル更新を計算する。
労働者は中心的な調整なしに隣人とのみ通信するため、これらの更新はネットワーク上で徐々に伝播する。
このパラダイムは、全接続のないネットワーク上での分散トレーニングを可能にし、データのプライバシ保護と、データセンタでの分散トレーニングの通信コストの削減を支援する。
論文 参考訳(メタデータ) (2021-10-08T14:55:32Z) - Decentralized Local Stochastic Extra-Gradient for Variational
Inequalities [125.62877849447729]
我々は、不均一(非IID)で多くのデバイスに分散する問題データを持つ領域上での分散変分不等式(VIs)を考察する。
我々は、完全に分散化された計算の設定を網羅する計算ネットワークについて、非常に一般的な仮定を行う。
理論的には, モノトン, モノトンおよび非モノトンセッティングにおける収束速度を理論的に解析する。
論文 参考訳(メタデータ) (2021-06-15T17:45:51Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Consensus Control for Decentralized Deep Learning [72.50487751271069]
ディープラーニングモデルの分散トレーニングは、ネットワーク上のデバイス上での学習と、大規模計算クラスタへの効率的なスケーリングを可能にする。
理論上、トレーニングコンセンサス距離が重要な量よりも低い場合、分散化されたトレーニングは集中的なトレーニングよりも早く収束することを示す。
私たちの経験的な洞察は、パフォーマンス低下を軽減するために、より分散化されたトレーニングスキームの原則設計を可能にします。
論文 参考訳(メタデータ) (2021-02-09T13:58:33Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
フェデレートラーニング(Federated Learning、FL)とは、機械学習モデルを分散システムで直接訓練する学習パラダイムである。
一般的なFLアルゴリズムであるemphFederated Averaging (FedAvg)は重みのばらつきに悩まされている。
本稿では,この問題に対処するための局所的な継続的トレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-05-26T12:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。