Two Variations of Quantum Phase Estimation for Reducing Circuit Error Rates: Application to the Harrow--Hassidim--Lloyd Algorithm
- URL: http://arxiv.org/abs/2507.06711v1
- Date: Wed, 09 Jul 2025 10:08:50 GMT
- Title: Two Variations of Quantum Phase Estimation for Reducing Circuit Error Rates: Application to the Harrow--Hassidim--Lloyd Algorithm
- Authors: Yonghae Lee, Minjin Choi, Youngho Min, Eunok Bae, Sunghyun Bae,
- Abstract summary: We introduce two variations of the quantum phase estimation algorithm.<n>We integrate them into a hybrid quantum-classical implementation of the Harrow--Hassidim--Lloyd algorithm for solving linear systems.
- Score: 1.3797901915908073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce two variations of the quantum phase estimation algorithm: quantum shifted phase estimation and quantum punctured phase estimation. The shifted method employs a bit-string left shift to discard the most significant bit and focus on lower-order phase components, and the punctured method removes qubits corresponding to known phase bits, thereby streamlining the circuit. To demonstrate the effectiveness of the two variations, we integrate them into a hybrid quantum-classical implementation of the Harrow--Hassidim--Lloyd algorithm for solving linear systems. The hybrid method leverages both quantum and classical processors to identify and remove unnecessary qubits and gates. As a result, our method reduces qubit and gate counts compared to previous implementations, leading to lower overall circuit error rates on current hardware. Experimental demonstrations on IBM superconducting hardware confirm the error-mitigation effectiveness of the proposed hybrid method.
Related papers
- Dynamic Circuits for the Quantum Lattice-Boltzmann Method [0.0]
We propose a quantum algorithm for the linear advection-diffusion equation (ADE) Lattice-Boltzmann method (LBM)<n> Dynamic quantum circuits allow for an optimized collision-operator quantum algorithm, introducing partial measurements as an integral step.
arXiv Detail & Related papers (2025-02-04T09:04:24Z) - A multiple-circuit approach to quantum resource reduction with application to the quantum lattice Boltzmann method [39.671915199737846]
We introduce a multiple-circuit algorithm for a quantum lattice Boltzmann method (QLBM) solve of the incompressible Navier--Stokes equations.<n>The presented method is validated and demonstrated for 2D lid-driven cavity flow.
arXiv Detail & Related papers (2024-01-20T15:32:01Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
We present it FragQC, a software tool that cuts a quantum circuit into sub-circuits when its error probability exceeds a certain threshold.
We achieve an increase of fidelity by 14.83% compared to direct execution without cutting the circuit, and 8.45% over the state-of-the-art ILP-based method.
arXiv Detail & Related papers (2023-09-30T17:38:31Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Comparative analysis of error mitigation techniques for variational
quantum eigensolver implementations on IBM quantum system [4.116593140131957]
We compare the error mitigation capability of the [[4,2,2]] quantum error-detecting code (QEC method), duplicate circuit technique, and the Bayesian read-out error mitigation (BREM) approach.
Based on experiments on IBM quantum device, our results show that the duplicate circuit approach performs superior to the QEC method in the presence of the hardware noise.
arXiv Detail & Related papers (2022-06-16T04:21:25Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Measurement-induced entanglement phase transitions in variational
quantum circuits [0.4499833362998487]
Variational quantum algorithms (VQAs) classically optimize a parametrized quantum circuit to solve a computational task.
We study the entanglement transition in variational quantum circuits endowed with intermediate projective measurements.
Our work paves an avenue for greatly improving the trainability of quantum circuits by incorporating intermediate measurement protocols in currently available quantum hardware.
arXiv Detail & Related papers (2021-11-15T19:00:28Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.