Quantum circuit debugging and sensitivity analysis via local inversions
- URL: http://arxiv.org/abs/2204.06056v3
- Date: Tue, 7 Feb 2023 03:40:20 GMT
- Title: Quantum circuit debugging and sensitivity analysis via local inversions
- Authors: Fernando A. Calderon-Vargas, Timothy Proctor, Kenneth Rudinger, Mohan
Sarovar
- Abstract summary: We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
- Score: 62.997667081978825
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the width and depth of quantum circuits implemented by state-of-the-art
quantum processors rapidly increase, circuit analysis and assessment via
classical simulation are becoming unfeasible. It is crucial, therefore, to
develop new methods to identify significant error sources in large and complex
quantum circuits. In this work, we present a technique that pinpoints the
sections of a quantum circuit that affect the circuit output the most and thus
helps to identify the most significant sources of error. The technique requires
no classical verification of the circuit output and is thus a scalable tool for
debugging large quantum programs in the form of circuits. We demonstrate the
practicality and efficacy of the proposed technique by applying it to example
algorithmic circuits implemented on IBM quantum machines.
Related papers
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
arXiv Detail & Related papers (2024-12-30T12:05:09Z) - AI-Powered Algorithm-Centric Quantum Processor Topology Design [10.53761034955718]
We introduce a novel approach to dynamically tailor qubit topologies to the unique specifications of individual quantum circuits.
Our method marks a significant departure from previous methods that have been constrained to mapping circuits onto a fixed processor topology.
arXiv Detail & Related papers (2024-12-18T12:53:16Z) - Equivalence Checking of Quantum Circuits via Intermediary Matrix Product Operator [4.306566710489809]
Equivalence checking plays a vital role in identifying errors that may arise during compilation and optimization of quantum circuits.
We introduce a novel method based on Matrix Product Operators (MPOs) for determining the equivalence of quantum circuits.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Symmetry-Based Quantum Circuit Mapping [2.51705778594846]
We introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors.
This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation.
arXiv Detail & Related papers (2023-10-27T10:04:34Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
The purpose of our quantum synthesizer is enabling users to implement quantum algorithms using higher-level commands.
The proposed approach for implementing quantum algorithms has a potential application in the field of machine learning.
arXiv Detail & Related papers (2022-09-20T06:25:47Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.
However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.
This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.