MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion
- URL: http://arxiv.org/abs/2406.18950v2
- Date: Sun, 7 Jul 2024 18:19:38 GMT
- Title: MMR-Mamba: Multi-Modal MRI Reconstruction with Mamba and Spatial-Frequency Information Fusion
- Authors: Jing Zou, Lanqing Liu, Qi Chen, Shujun Wang, Zhanli Hu, Xiaohan Xing, Jing Qin,
- Abstract summary: We propose MMR-Mamba, a novel framework that thoroughly and efficiently integrates multi-modal features for MRI reconstruction.
Specifically, we first design a Target modality-guided Cross Mamba (TCM) module in the spatial domain.
Then, we introduce a Selective Frequency Fusion (SFF) module to efficiently integrate global information in the Fourier domain.
- Score: 17.084083262801737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal MRI offers valuable complementary information for diagnosis and treatment; however, its utility is limited by prolonged scanning times. To accelerate the acquisition process, a practical approach is to reconstruct images of the target modality, which requires longer scanning times, from under-sampled k-space data using the fully-sampled reference modality with shorter scanning times as guidance. The primary challenge of this task is comprehensively and efficiently integrating complementary information from different modalities to achieve high-quality reconstruction. Existing methods struggle with this: 1) convolution-based models fail to capture long-range dependencies; 2) transformer-based models, while excelling in global feature modeling, struggle with quadratic computational complexity. To address this, we propose MMR-Mamba, a novel framework that thoroughly and efficiently integrates multi-modal features for MRI reconstruction, leveraging Mamba's capability to capture long-range dependencies with linear computational complexity while exploiting global properties of the Fourier domain. Specifically, we first design a Target modality-guided Cross Mamba (TCM) module in the spatial domain, which maximally restores the target modality information by selectively incorporating relevant information from the reference modality. Then, we introduce a Selective Frequency Fusion (SFF) module to efficiently integrate global information in the Fourier domain and recover high-frequency signals for the reconstruction of structural details. Furthermore, we devise an Adaptive Spatial-Frequency Fusion (ASFF) module, which mutually enhances the spatial and frequency domains by supplementing less informative channels from one domain with corresponding channels from the other.
Related papers
- Zero-shot Dynamic MRI Reconstruction with Global-to-local Diffusion Model [17.375064910924717]
We propose a dynamic MRI reconstruction method based on a time-interleaved acquisition scheme, termed the Glob-al-to-local Diffusion Model.
The proposed method performs well in terms of noise reduction and preservation, achieving reconstruction quality comparable to that of supervised approaches.
arXiv Detail & Related papers (2024-11-06T07:40:27Z) - Accelerated Multi-Contrast MRI Reconstruction via Frequency and Spatial Mutual Learning [50.74383395813782]
We propose a novel Frequency and Spatial Mutual Learning Network (FSMNet) to explore global dependencies across different modalities.
The proposed FSMNet achieves state-of-the-art performance for the Multi-Contrast MR Reconstruction task with different acceleration factors.
arXiv Detail & Related papers (2024-09-21T12:02:47Z) - Frequency-Assisted Mamba for Remote Sensing Image Super-Resolution [49.902047563260496]
We develop the first attempt to integrate the Vision State Space Model (Mamba) for remote sensing image (RSI) super-resolution.
To achieve better SR reconstruction, building upon Mamba, we devise a Frequency-assisted Mamba framework, dubbed FMSR.
Our FMSR features a multi-level fusion architecture equipped with the Frequency Selection Module (FSM), Vision State Space Module (VSSM), and Hybrid Gate Module (HGM)
arXiv Detail & Related papers (2024-05-08T11:09:24Z) - Enhancing Automatic Modulation Recognition through Robust Global Feature
Extraction [12.868218616042292]
Modulated signals exhibit long temporal dependencies.
Human experts analyze patterns in constellation diagrams to classify modulation schemes.
Classical convolutional-based networks excel at extracting local features but struggle to capture global relationships.
arXiv Detail & Related papers (2024-01-02T06:31:24Z) - Modality-Collaborative Transformer with Hybrid Feature Reconstruction
for Robust Emotion Recognition [35.15390769958969]
We propose a unified framework, Modality-Collaborative Transformer with Hybrid Feature Reconstruction (MCT-HFR)
MCT-HFR consists of a novel attention-based encoder which concurrently extracts and dynamically balances the intra- and inter-modality relations.
During model training, LFI leverages complete features as supervisory signals to recover local missing features, while GFA is designed to reduce the global semantic gap between pairwise complete and incomplete representations.
arXiv Detail & Related papers (2023-12-26T01:59:23Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Specificity-Preserving Federated Learning for MR Image Reconstruction [94.58912814426122]
Federated learning can be used to improve data privacy and efficiency in magnetic resonance (MR) image reconstruction.
Recent FL techniques tend to solve this by enhancing the generalization of the global model.
We propose a specificity-preserving FL algorithm for MR image reconstruction (FedMRI)
arXiv Detail & Related papers (2021-12-09T22:13:35Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Accelerated Multi-Modal MR Imaging with Transformers [92.18406564785329]
We propose a multi-modal transformer (MTrans) for accelerated MR imaging.
By restructuring the transformer architecture, our MTrans gains a powerful ability to capture deep multi-modal information.
Our framework provides two appealing benefits: (i) MTrans is the first attempt at using improved transformers for multi-modal MR imaging, affording more global information compared with CNN-based methods.
arXiv Detail & Related papers (2021-06-27T15:01:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.