Checklist Engineering Empowers Multilingual LLM Judges
- URL: http://arxiv.org/abs/2507.06774v2
- Date: Sun, 27 Jul 2025 08:42:57 GMT
- Title: Checklist Engineering Empowers Multilingual LLM Judges
- Authors: Mohammad Ghiasvand Mohammadkhani, Hamid Beigy,
- Abstract summary: Checklist Engineering based LLM-as-a-Judge (CE-Judge) is a training-free framework that uses checklist intuition for multilingual evaluation with an open-source model.<n>Our method generally surpasses the baselines and performs on par with the GPT-4o model.
- Score: 12.64438771302935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated text evaluation has long been a central issue in Natural Language Processing (NLP). Recently, the field has shifted toward using Large Language Models (LLMs) as evaluators-a trend known as the LLM-as-a-Judge paradigm. While promising and easily adaptable across tasks, this approach has seen limited exploration in multilingual contexts. Existing multilingual studies often rely on proprietary models or require extensive training data for fine-tuning, raising concerns about cost, time, and efficiency. In this paper, we propose Checklist Engineering based LLM-as-a-Judge (CE-Judge), a training-free framework that uses checklist intuition for multilingual evaluation with an open-source model. Experiments across multiple languages and three benchmark datasets, under both pointwise and pairwise settings, show that our method generally surpasses the baselines and performs on par with the GPT-4o model.
Related papers
- Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models [52.22235443948351]
High-quality multilingual training data is essential for effectively pretraining large language models (LLMs)<n>Here, we introduce JQL, a systematic approach that efficiently curates diverse and high-quality multilingual data at scale.<n>JQL distills LLMs' annotation capabilities into lightweight annotators based on pretrained multilingual embeddings.
arXiv Detail & Related papers (2025-05-28T11:06:54Z) - M-Prometheus: A Suite of Open Multilingual LLM Judges [64.22940792713713]
We introduce M-Prometheus, a suite of open-weight LLM judges that can provide both direct assessment and pairwise comparison feedback on multilingual outputs.<n>M-Prometheus models outperform state-of-the-art open LLM judges on multilingual reward benchmarks spanning more than 20 languages, as well as on literary machine translation (MT) evaluation covering 4 language pairs.
arXiv Detail & Related papers (2025-04-07T11:37:26Z) - Enhancing Multilingual Language Models for Code-Switched Input Data [0.0]
This research investigates if pre-training Multilingual BERT (mBERT) on code-switched datasets improves the model's performance on critical NLP tasks.<n>We use a dataset of Spanglish tweets for pre-training and evaluate the pre-trained model against a baseline model.<n>Our findings show that our pre-trained mBERT model outperforms or matches the baseline model in the given tasks, with the most significant improvements seen for parts of speech tagging.
arXiv Detail & Related papers (2025-03-11T02:49:41Z) - Few-Shot Multilingual Open-Domain QA from 5 Examples [44.04243892727856]
We introduce a emphfew-shot learning approach to synthesise large-scale multilingual data from large language models (LLMs)<n>Our method begins with large-scale self-supervised pre-training using WikiData, followed by training on high-quality synthetic multilingual data generated by prompting LLMs with few-shot supervision.<n>The final model, textscFsModQA, significantly outperforms existing few-shot and supervised baselines in MLODQA and cross-lingual and monolingual retrieval.
arXiv Detail & Related papers (2025-02-27T03:24:57Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
We introduce P-MMEval, a large-scale benchmark covering effective fundamental and capability-specialized datasets.<n>P-MMEval delivers consistent language coverage across various datasets and provides parallel samples.<n>We conduct extensive experiments on representative multilingual model series to compare performances across models and tasks.
arXiv Detail & Related papers (2024-11-14T01:29:36Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.<n>Currently, instruction-tuned large language models (LLMs) excel at various English tasks.<n>Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.<n>But can these models relate corresponding concepts across languages, i.e., be crosslingual?<n>This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - MELA: Multilingual Evaluation of Linguistic Acceptability [7.524375463656369]
We present the largest benchmark to date on linguistic acceptability: Multilingual Evaluation of Linguistic Acceptability -- MELA, with 46K samples covering 10 languages.
In pursuit of multilingual interpretability, we conduct probing experiments with fine-tuned XLM-R.
Cross-lingual transfer experiments show that transfer in acceptability judgment is non-trivial.
arXiv Detail & Related papers (2023-11-15T15:25:28Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Beyond Static Models and Test Sets: Benchmarking the Potential of
Pre-trained Models Across Tasks and Languages [15.373725507698591]
We argue that this makes the existing practices in multilingual evaluation unreliable and does not provide a full picture of the performance of MMLMs across the linguistic landscape.
We propose that the recent work done in Performance Prediction for NLP tasks can serve as a potential solution in fixing benchmarking in Multilingual NLP.
We compare performance prediction with translating test data with a case study on four different multilingual datasets, and observe that these methods can provide reliable estimates of the performance that are often on-par with the translation based approaches.
arXiv Detail & Related papers (2022-05-12T20:42:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.