Conformal Prediction for Long-Tailed Classification
- URL: http://arxiv.org/abs/2507.06867v1
- Date: Wed, 09 Jul 2025 14:08:50 GMT
- Title: Conformal Prediction for Long-Tailed Classification
- Authors: Tiffany Ding, Jean-Baptiste Fermanian, Joseph Salmon,
- Abstract summary: Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions.<n>Existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large.<n>We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage.
- Score: 9.47832538610206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we propose a conformal score function, prevalence-adjusted softmax, that targets a relaxed notion of class-conditional coverage called macro-coverage. Second, we propose a label-weighted conformal prediction method that allows us to interpolate between marginal and class-conditional conformal prediction. We demonstrate our methods on Pl@ntNet and iNaturalist, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
Related papers
- Backward Conformal Prediction [49.1574468325115]
We introduce $textitBackward Conformal Prediction$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets.<n>Our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly.<n>This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis.
arXiv Detail & Related papers (2025-05-19T21:08:14Z) - Robust Conformal Prediction with a Single Binary Certificate [58.450154976190795]
Conformal prediction (CP) converts any model's output to prediction sets with a guarantee to cover the true label with (adjustable) high probability.<n>We propose a robust conformal prediction that produces smaller sets even with significantly lower MC samples.
arXiv Detail & Related papers (2025-03-07T08:41:53Z) - Sparse Activations as Conformal Predictors [19.298282860984116]
We find a novel connection between conformal prediction and sparse softmax-like transformations.<n>We introduce new non-conformity scores for classification that make the calibration process correspond to the widely used temperature scaling method.<n>We show that the proposed method achieves competitive results in terms of coverage, efficiency, and adaptiveness.
arXiv Detail & Related papers (2025-02-20T17:53:41Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.<n>We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Conformal Prediction for Class-wise Coverage via Augmented Label Rank Calibration [30.039997048267]
This paper proposes the Rank Calibrated Class-conditional CP (RC3P) algorithm to reduce the prediction set sizes to achieve class-conditional coverage.<n>Experiments on multiple real-world datasets demonstrate that RC3P achieves class-wise coverage and 26.25% reduction in prediction set sizes on average.
arXiv Detail & Related papers (2024-06-10T22:01:34Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - Class-Conditional Conformal Prediction with Many Classes [60.8189977620604]
We propose a method called clustered conformal prediction that clusters together classes having "similar" conformal scores.
We find that clustered conformal typically outperforms existing methods in terms of class-conditional coverage and set size metrics.
arXiv Detail & Related papers (2023-06-15T17:59:02Z) - Practical Adversarial Multivalid Conformal Prediction [27.179891682629183]
We give a generic conformal prediction method for sequential prediction.
It achieves target empirical coverage guarantees against adversarially chosen data.
It is computationally lightweight -- comparable to split conformal prediction.
arXiv Detail & Related papers (2022-06-02T14:33:00Z) - Cautious Active Clustering [79.23797234241471]
We consider the problem of classification of points sampled from an unknown probability measure on a Euclidean space.
Our approach is to consider the unknown probability measure as a convex combination of the conditional probabilities for each class.
arXiv Detail & Related papers (2020-08-03T23:47:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.