論文の概要: DICE: Data Influence Cascade in Decentralized Learning
- arxiv url: http://arxiv.org/abs/2507.06931v1
- Date: Wed, 09 Jul 2025 15:13:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.639281
- Title: DICE: Data Influence Cascade in Decentralized Learning
- Title(参考訳): DICE: 分散学習におけるデータ影響カスケード
- Authors: Tongtian Zhu, Wenhao Li, Can Wang, Fengxiang He,
- Abstract要約: 分散環境でtextbfData textbfInfluence textbfCascadtextbfE (DICE) を推定するフレームワークを開発した。
DICEは、適切なコラボレータの選択や悪意のある振る舞いの特定を含む、アプリケーションの基盤を配置する。
- 参考スコア(独自算出の注目度): 40.90617253486055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized learning offers a promising approach to crowdsource data consumptions and computational workloads across geographically distributed compute interconnected through peer-to-peer networks, accommodating the exponentially increasing demands. However, proper incentives are still in absence, considerably discouraging participation. Our vision is that a fair incentive mechanism relies on fair attribution of contributions to participating nodes, which faces non-trivial challenges arising from the localized connections making influence ``cascade'' in a decentralized network. To overcome this, we design the first method to estimate \textbf{D}ata \textbf{I}nfluence \textbf{C}ascad\textbf{E} (DICE) in a decentralized environment. Theoretically, the framework derives tractable approximations of influence cascade over arbitrary neighbor hops, suggesting the influence cascade is determined by an interplay of data, communication topology, and the curvature of loss landscape. DICE also lays the foundations for applications including selecting suitable collaborators and identifying malicious behaviors. Project page is available at https://raiden-zhu.github.io/blog/2025/DICE/.
- Abstract(参考訳): 分散学習は、ピアツーピアネットワークを介して相互接続された地理的に分散した計算をクラウドソースするデータ消費と計算ワークロードに対する、有望なアプローチを提供する。
しかし、適切なインセンティブがまだ存在せず、参加をかなり妨げている。
我々のビジョンは、公平なインセンティブメカニズムは参加ノードへの貢献の公正な帰属に依存しており、分散ネットワークにおける‘カスケード’に影響を及ぼす局所的な接続から生じる非自明な課題に直面している。
そこで本研究では, 分散環境下でのまず最初に, 分散環境でのtextbf{D}ata \textbf{I}nfluence \textbf{C}ascad\textbf{E} (DICE) を推定する手法を設計する。
理論的には、任意の近傍ホップ上の影響カスケードの抽出可能な近似を導出し、影響カスケードはデータ、通信トポロジ、損失景観の曲率によって決定されることを示す。
DICEはまた、適切なコラボレータの選択や悪意のある振る舞いの特定を含む、アプリケーションの基盤も設けている。
プロジェクトページはhttps://raiden-zhu.github.io/blog/2025/DICE/で公開されている。
関連論文リスト
- Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
信頼できない無線ネットワークの異なるノードに分散するベクトルの平均をプライベートに推定する問題を考える。
半分散的なセットアップでは、ノードは隣人と協力してローカルコンセンサスを計算し、中央サーバにリレーする。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2024-06-06T06:12:15Z) - Decentralized Directed Collaboration for Personalized Federated Learning [39.29794569421094]
我々は分散トレーニングモデル計算を行う分散パーソナライズドラーニング(DPFL)に集中する。
我々は, textbfDecentralized textbfFederated textbfPartial textbfGradient textbfPedGP を組み込んだ協調型フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-28T06:52:19Z) - Impact of network topology on the performance of Decentralized Federated
Learning [4.618221836001186]
分散機械学習は、インフラストラクチャの課題とプライバシの懸念に対処し、勢いを増している。
本研究では,3つのネットワークトポロジと6つのデータ分散手法を用いて,ネットワーク構造と学習性能の相互作用について検討する。
モデル集約時の希釈効果に起因する周辺ノードから中心ノードへの知識伝達の課題を強調した。
論文 参考訳(メタデータ) (2024-02-28T11:13:53Z) - DSCom: A Data-Driven Self-Adaptive Community-Based Framework for
Influence Maximization in Social Networks [3.97535858363999]
我々は、属性ネットワーク上の問題を再構成し、ノード属性を利用して接続ノード間の近接性を推定する。
具体的には、この問題に対処するため、DSComという機械学習ベースのフレームワークを提案する。
従来の理論的研究と比較して,実世界のソーシャルネットワークに基づくパラメータ化拡散モデルを用いた実験実験を慎重に設計した。
論文 参考訳(メタデータ) (2023-11-18T14:03:43Z) - Sparse Decentralized Federated Learning [35.32297764027417]
分散フェデレートラーニング(DFL)は、中央サーバーなしで協調的なモデルトレーニングを可能にするが、効率、安定性、信頼性の課題に直面している。
Sparse DFL (SDFL) に繋がる共有モデルに空間制約を導入し,新しいアルゴリズムCEPSを提案する。
数値実験により,高い信頼性を維持しつつ,コミュニケーションと効率を向上させるための提案アルゴリズムの有効性が検証された。
論文 参考訳(メタデータ) (2023-08-31T12:22:40Z) - CAFIN: Centrality Aware Fairness inducing IN-processing for Unsupervised Representation Learning on Graphs [10.042608422528392]
CAFIN(Centrality-aware Fairness-inducing framework)は、既存のフレームワークが生成した表現を調整するためのフレームワークである。
GraphSAGEにデプロイし、ノード分類とリンク予測という2つの下流タスクで有効性を示します。
論文 参考訳(メタデータ) (2023-04-10T05:40:09Z) - Collaborative Mean Estimation over Intermittently Connected Networks
with Peer-To-Peer Privacy [86.61829236732744]
本研究は、断続接続を有するネットワーク上での分散平均推定(DME)の問題について考察する。
目標は、中央サーバの助けを借りて、分散ノード間でローカライズされたデータサンプルに関するグローバル統計を学習することだ。
ノード間のデータ共有による協調中継とプライバシー漏洩のトレードオフについて検討する。
論文 参考訳(メタデータ) (2023-02-28T19:17:03Z) - Byzantine-Robust Decentralized Learning via ClippedGossip [61.03711813598128]
ビザンチン・ロバスト・コンセンサス最適化のためのClippedGossipアルゴリズムを提案する。
ClippedGossipの実証実験性能を多数の攻撃下で実証した。
論文 参考訳(メタデータ) (2022-02-03T12:04:36Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Privacy Amplification by Decentralization [0.0]
我々は,完全分散プロトコルに自然発生する,新たなldp(local differential privacy)緩和を提案する。
本研究では,トークンがネットワークグラフ上でウォークを実行し,受信者によって順次更新される分散計算モデルについて検討する。
アルゴリズムのプライバシとユーティリティのトレードオフがLDPを大幅に改善し、信頼/安全アグリゲーションとシャッフルに基づく方法で達成できるものと一致していることを証明しています。
論文 参考訳(メタデータ) (2020-12-09T21:33:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。