MCCD: A Multi-Attribute Chinese Calligraphy Character Dataset Annotated with Script Styles, Dynasties, and Calligraphers
- URL: http://arxiv.org/abs/2507.06948v1
- Date: Wed, 09 Jul 2025 15:31:33 GMT
- Title: MCCD: A Multi-Attribute Chinese Calligraphy Character Dataset Annotated with Script Styles, Dynasties, and Calligraphers
- Authors: Yixin Zhao, Yuyi Zhang, Lianwen Jin,
- Abstract summary: The styles of Chinese calligraphy characters have evolved dramatically through different dynasties and the unique touches of calligraphers.<n>Existing calligraphic datasets are extremely scarce, and most provide only character-level annotations.<n>We present a novel Multi-Attribute Chinese calligraphy Character dataset (MCCD)<n>The dataset encompasses 7,765 categories with a total of 329,715 isolated image samples of Chinese calligraphy characters.
- Score: 30.565170610442816
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Research on the attribute information of calligraphy, such as styles, dynasties, and calligraphers, holds significant cultural and historical value. However, the styles of Chinese calligraphy characters have evolved dramatically through different dynasties and the unique touches of calligraphers, making it highly challenging to accurately recognize these different characters and their attributes. Furthermore, existing calligraphic datasets are extremely scarce, and most provide only character-level annotations without additional attribute information. This limitation has significantly hindered the in-depth study of Chinese calligraphy. To fill this gap, we present a novel Multi-Attribute Chinese Calligraphy Character Dataset (MCCD). The dataset encompasses 7,765 categories with a total of 329,715 isolated image samples of Chinese calligraphy characters, and three additional subsets were extracted based on the attribute labeling of the three types of script styles (10 types), dynasties (15 periods) and calligraphers (142 individuals). The rich multi-attribute annotations render MCCD well-suited diverse research tasks, including calligraphic character recognition, writer identification, and evolutionary studies of Chinese characters. We establish benchmark performance through single-task and multi-task recognition experiments across MCCD and all of its subsets. The experimental results demonstrate that the complexity of the stroke structure of the calligraphic characters, and the interplay between their different attributes, leading to a substantial increase in the difficulty of accurate recognition. MCCD not only fills a void in the availability of detailed calligraphy datasets but also provides valuable resources for advancing research in Chinese calligraphy and fostering advancements in multiple fields. The dataset is available at https://github.com/SCUT-DLVCLab/MCCD.
Related papers
- Skeleton and Font Generation Network for Zero-shot Chinese Character Generation [53.08596064763731]
We propose a novel Skeleton and Font Generation Network (SFGN) to achieve a more robust Chinese character font generation.<n>We conduct experiments on misspelled characters, a substantial portion of which slightly differs from the common ones.<n>Our approach visually demonstrates the efficacy of generated images and outperforms current state-of-the-art font generation methods.
arXiv Detail & Related papers (2025-01-14T12:15:49Z) - Multi-Modal Multi-Granularity Tokenizer for Chu Bamboo Slip Scripts [65.10991154918737]
This study focuses on the Chu bamboo slip (CBS) script used during the Spring and Autumn and Warring States period (771-256 BCE) in Ancient China.
Our tokenizer first adopts character detection to locate character boundaries, and then conducts character recognition at both the character and sub-character levels.
To support the academic community, we have also assembled the first large-scale dataset of CBSs with over 100K annotated character image scans.
arXiv Detail & Related papers (2024-09-02T07:42:55Z) - Deep Learning-Driven Approach for Handwritten Chinese Character Classification [0.0]
Handwritten character recognition is a challenging problem for machine learning researchers.
With numerous unique character classes present, some data, such as Logographic Scripts or Sino-Korean character sequences, bring new complications to the HCR problem.
This paper proposes a highly scalable approach for detailed character image classification by introducing the model architecture, data preprocessing steps, and testing design instructions.
arXiv Detail & Related papers (2024-01-30T15:29:32Z) - Chinese Text Recognition with A Pre-Trained CLIP-Like Model Through
Image-IDS Aligning [61.34060587461462]
We propose a two-stage framework for Chinese Text Recognition (CTR)
We pre-train a CLIP-like model through aligning printed character images and Ideographic Description Sequences (IDS)
This pre-training stage simulates humans recognizing Chinese characters and obtains the canonical representation of each character.
The learned representations are employed to supervise the CTR model, such that traditional single-character recognition can be improved to text-line recognition.
arXiv Detail & Related papers (2023-09-03T05:33:16Z) - Improving Scene Text Recognition for Character-Level Long-Tailed
Distribution [35.14058653707104]
We propose a novel Context-Aware and Free Experts Network (CAFE-Net) using two experts.
CAFE-Net improves the STR performance on languages containing numerous number of characters.
arXiv Detail & Related papers (2023-03-31T06:11:33Z) - PART: Pre-trained Authorship Representation Transformer [52.623051272843426]
Authors writing documents imprint identifying information within their texts.<n>Previous works use hand-crafted features or classification tasks to train their authorship models.<n>We propose a contrastively trained model fit to learn textbfauthorship embeddings instead of semantics.
arXiv Detail & Related papers (2022-09-30T11:08:39Z) - Letter-level Online Writer Identification [86.13203975836556]
We focus on a novel problem, letter-level online writer-id, which requires only a few trajectories of written letters as identification cues.
A main challenge is that a person often writes a letter in different styles from time to time.
We refer to this problem as the variance of online writing styles (Var-O-Styles)
arXiv Detail & Related papers (2021-12-06T07:21:53Z) - Generating More Pertinent Captions by Leveraging Semantics and Style on
Multi-Source Datasets [56.018551958004814]
This paper addresses the task of generating fluent descriptions by training on a non-uniform combination of data sources.
Large-scale datasets with noisy image-text pairs provide a sub-optimal source of supervision.
We propose to leverage and separate semantics and descriptive style through the incorporation of a style token and keywords extracted through a retrieval component.
arXiv Detail & Related papers (2021-11-24T19:00:05Z) - ShufaNet: Classification method for calligraphers who have reached the
professional level [0.0]
We propose a novel method, ShufaNet, to classify Chinese calligraphers' styles based on metric learning.
Our method achieved 65% accuracy rate in our data set for few-shot learning, surpassing resNet and other mainstream CNNs.
arXiv Detail & Related papers (2021-11-22T16:55:31Z) - ZiGAN: Fine-grained Chinese Calligraphy Font Generation via a Few-shot
Style Transfer Approach [7.318027179922774]
ZiGAN is a powerful end-to-end Chinese calligraphy font generation framework.
It does not require any manual operation or redundant preprocessing to generate fine-grained target-style characters.
Our method has a state-of-the-art generalization ability in few-shot Chinese character style transfer.
arXiv Detail & Related papers (2021-08-08T09:50:20Z) - CalliGAN: Style and Structure-aware Chinese Calligraphy Character
Generator [6.440233787863018]
Chinese calligraphy is the writing of Chinese characters as an art form performed with brushes.
Recent studies show that Chinese characters can be generated through image-to-image translation for multiple styles using a single model.
We propose a novel method of this approach by incorporating Chinese characters' component information into its model.
arXiv Detail & Related papers (2020-05-26T03:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.