Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy
- URL: http://arxiv.org/abs/2507.06969v1
- Date: Wed, 09 Jul 2025 15:59:30 GMT
- Title: Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy
- Authors: Bogdan Kulynych, Juan Felipe Gomez, Georgios Kaissis, Jamie Hayes, Borja Balle, Flavio du Pin Calmon, Jean Louis Raisaro,
- Abstract summary: We show that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks.<n>Our results are tighter than prior methods using $varepsilon$-DP, R'enyi DP, and concentrated DP.
- Score: 18.92793740861912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary (including worst-case) levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, R\'enyi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., more than 15pp accuracy increase in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
Related papers
- Beyond the Worst Case: Extending Differential Privacy Guarantees to Realistic Adversaries [17.780319275883127]
Differential Privacy is a family of definitions that bound the worst-case privacy leakage of a mechanism.<n>This work sheds light on what the worst-case guarantee of DP implies about the success of attackers that are more representative of real-world privacy risks.
arXiv Detail & Related papers (2025-07-10T20:36:31Z) - COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COIN is an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question.<n>COIN estimates the empirical error rate on a calibration set and applies confidence interval methods to establish a high-probability upper bound on the true error rate.<n>We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data.
arXiv Detail & Related papers (2025-06-25T07:04:49Z) - SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
We propose a novel approach termed Selective Conformal Uncertainty (SConU)<n>We develop two conformal p-values that are instrumental in determining whether a given sample deviates from the uncertainty distribution of the calibration set at a specific manageable risk level.<n>Our approach not only facilitates rigorous management of miscoverage rates across both single-domain and interdisciplinary contexts, but also enhances the efficiency of predictions.
arXiv Detail & Related papers (2025-04-19T03:01:45Z) - Conditional Conformal Risk Adaptation [9.559062601251464]
We develop a new score function for creating adaptive prediction sets that significantly improve conditional risk control for segmentation tasks.<n>We introduce a specialized probability calibration framework that enhances the reliability of pixel-wise inclusion estimates.<n>Our experiments on polyp segmentation demonstrate that all three methods provide valid marginal risk control and deliver more consistent conditional risk control.
arXiv Detail & Related papers (2025-04-10T10:01:06Z) - Coverage-Guaranteed Speech Emotion Recognition via Calibrated Uncertainty-Adaptive Prediction Sets [0.0]
Road rage, often triggered by emotional suppression and sudden outbursts, significantly threatens road safety by causing collisions and aggressive behavior.<n>Speech emotion recognition technologies can mitigate this risk by identifying negative emotions early and issuing timely alerts.<n>We propose a novel risk-controlled prediction framework providing statistically rigorous guarantees on prediction accuracy.
arXiv Detail & Related papers (2025-03-24T12:26:28Z) - Revisiting Privacy-Utility Trade-off for DP Training with Pre-existing Knowledge [31.559864332056648]
We propose a generic differential privacy framework with heterogeneous noise (DP-Hero)<n>Atop DP-Hero, we instantiate a heterogeneous version of DP-SGD, where the noise injected into gradients is heterogeneous and guided by prior-established model parameters.<n>We conduct comprehensive experiments to verify and explain the effectiveness of the proposed DP-Hero, showing improved training accuracy compared with state-of-the-art works.
arXiv Detail & Related papers (2024-09-05T08:40:54Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Evaluating the Impact of Local Differential Privacy on Utility Loss via
Influence Functions [11.504012974208466]
We demonstrate the ability of influence functions to offer insight into how a specific privacy parameter value will affect a model's test loss.
Our proposed method allows a data curator to select the privacy parameter best aligned with their allowed privacy-utility trade-off.
arXiv Detail & Related papers (2023-09-15T18:08:24Z) - Assessing the risk of re-identification arising from an attack on
anonymised data [0.24466725954625884]
We calculate the risk of re-identification arising from a malicious attack to an anonymised dataset.
We present an analytical means of estimating the probability of re-identification of a single patient in a k-anonymised dataset.
We generalize this solution to obtain the probability of multiple patients being re-identified.
arXiv Detail & Related papers (2022-03-31T09:47:05Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
Generative adversarial network (GAN) has attracted increasing attention recently owing to its impressive ability to generate realistic samples with high privacy protection.
However, when GANs are applied on sensitive or private training examples, such as medical or financial records, it is still probable to divulge individuals' sensitive and private information.
We propose a R'enyi-differentially private-GAN (RDP-GAN), which achieves differential privacy (DP) in a GAN by carefully adding random noises on the value of the loss function during training.
arXiv Detail & Related papers (2020-07-04T09:51:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.