論文の概要: First Return, Entropy-Eliciting Explore
- arxiv url: http://arxiv.org/abs/2507.07017v1
- Date: Wed, 09 Jul 2025 16:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.683566
- Title: First Return, Entropy-Eliciting Explore
- Title(参考訳): 初回リターン, エントロピー誘発探査
- Authors: Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li, Zhoufutu Wen, Chenghua Lin, Wenhao Huang, Qian Liu, Ge Zhang, Zejun Ma,
- Abstract要約: RLVRによる強化学習は大規模言語モデル(LLM)の推論能力を向上させる
本稿では,軌道推定における不確実性の高い決定点を識別する構造化探索フレームワークFR3Eを提案する。
実験の結果、FR3Eはより安定した訓練を促進し、より長くより一貫性のある反応を発生させ、完全な正しい軌道の比率を増大させることが示された。
- 参考スコア(独自算出の注目度): 33.36310289456799
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reinforcement Learning from Verifiable Rewards (RLVR) improves the reasoning abilities of Large Language Models (LLMs) but it struggles with unstable exploration. We propose FR3E (First Return, Entropy-Eliciting Explore), a structured exploration framework that identifies high-uncertainty decision points in reasoning trajectories and performs targeted rollouts to construct semantically grounded intermediate feedback. Our method provides targeted guidance without relying on dense supervision. Empirical results on mathematical reasoning benchmarks(AIME24) show that FR3E promotes more stable training, produces longer and more coherent responses, and increases the proportion of fully correct trajectories. These results highlight the framework's effectiveness in improving LLM reasoning through more robust and structured exploration.
- Abstract(参考訳): RLVR(Reinforcement Learning from Verifiable Rewards)は、大規模言語モデル(LLM)の推論能力を改善するが、不安定な探索に苦慮する。
提案するFR3E(First Return, Entropy-Eliciting Explore)は,トラジェクトリの推論における不確実性の高い決定点を識別し,セマンティックグラウンドの中間フィードバックを構築するためのターゲットロールアウトを実行する構造的探索フレームワークである。
本手法は, 厳密な監督に頼ることなく, 目標とするガイダンスを提供する。
数学的推論ベンチマーク(AIME24)の実証結果から、FR3Eはより安定したトレーニングを促進し、より長くより一貫性のある応答を生成し、完全に正しい軌道の比率を増大させる。
これらの結果は、より堅牢で構造化された探索を通してLLM推論を改善するためのフレームワークの有効性を強調している。
関連論文リスト
- MeRF: Motivation-enhanced Reinforcement Finetuning for Large Reasoning Models [95.6332110724999]
MeRF(Motivation-enhanced Reinforcement Finetuning)は、大規模言語モデル(LLM)の強化学習を強化する直感的かつ効果的な手法である。
MeRFは報酬仕様を直接プロンプトに注入し、最適化目標を認識して応答を改善するためのコンテキスト内モチベーションとして機能する。
Knights and Knaves(K&K)論理パズル推論ベンチマークに関する実証的な評価は、texttMeRFがベースラインよりもかなりの性能向上を達成することを示した。
論文 参考訳(メタデータ) (2025-06-23T10:37:57Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
大きな推論モデル(LRM)は、効率を阻害し、推論コストを膨らませる過剰な考えを示す。
LRM効率を向上させるための2つの軽量手法を提案する。
まず,学習不要なアクティベーションステアリング技術であるEfficic Steeringを導入する。
第2に,タスクの正確さと簡潔さを動的にバランスする強化学習フレームワークである自己回帰効率RLを開発する。
論文 参考訳(メタデータ) (2025-06-18T17:18:12Z) - Reasoning with Exploration: An Entropy Perspective [112.40801692473723]
強化学習(RL)の中心的目標としてのバランシング探索と活用
本研究では、RLにおける探査信号であるエントロピーを再検討し、LMにおける探索的推論との関係について検討する。
エントロピーに基づく項による優位関数の増大という,1行のコードのみによる標準RLへの最小限の修正を導入する。
論文 参考訳(メタデータ) (2025-06-17T17:54:03Z) - Direct Reasoning Optimization: LLMs Can Reward And Refine Their Own Reasoning for Open-Ended Tasks [6.881699020319577]
大規模言語モデル(LLM)を微調整するための強化学習フレームワークであるダイレクト推論最適化(DRO)を提案する。
DROは新たな報酬信号、Reasoning Reflection Reward (R3)によって誘導される。
DROは、オープンエンドドメインと構造化ドメインの両方にわたって広く適用されながら、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2025-06-16T10:43:38Z) - Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning [87.7836502955847]
本稿では,Large Language Model (LLM)推論を強化するための,自己回帰型強化学習フレームワークを提案する。
私たちのキーとなる洞察は、正しい応答はモデルの可能性の観点から一貫した軌道パターンを示すことが多いということです。
本稿では,安定度とボラティリティを,頑健なベクトル空間集約戦略を通じて統合する,本質的な報酬機構であるCoVoを紹介する。
論文 参考訳(メタデータ) (2025-06-10T12:40:39Z) - Navigate the Unknown: Enhancing LLM Reasoning with Intrinsic Motivation Guided Exploration [33.807927649100805]
大規模言語モデル(LLM)の推論能力向上のための重要な手法として強化学習(RL)が登場した。
RLアプローチは、スパース結果に基づく報酬への依存と、探索のインセンティブを高めるための不十分なメカニズムにより、重要な制限に直面している。
固有モチベーション guidEd ExploratioN meThOd foR LLM Reasoning (i-MENTOR) を提案する。
i-MENTORは、トークンレベルの戦略におけるバイアスを軽減する軌道対応探索報酬、大きなアクション空間における探索と利用を安定化するための動的報酬スケーリング、そして、維持する有利な報酬実装の3つの重要なイノベーションを紹介している。
論文 参考訳(メタデータ) (2025-05-23T08:30:28Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
大規模言語モデル(LLM)は複雑な推論において非常に有望である。
一般的な問題は表面的な自己回帰であり、モデルが自身の出力をしっかりと検証できない。
本稿では、RISE(Reinforce Reasoning with Self-Verification)という新しいオンラインRLフレームワークについて紹介する。
論文 参考訳(メタデータ) (2025-05-19T17:59:31Z) - Vision-Language Models Can Self-Improve Reasoning via Reflection [20.196406628954303]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)の推論能力の向上を実証した。
本稿では,自己学習フレームワークR3Vを提案する。このフレームワークは,CoTレーショナル上でのリフレクションにより,モデルの視覚言語推論を反復的に強化する。
提案手法は, 生成した解に対する自己回帰をサポートし, テスト時間計算による性能向上を図っている。
論文 参考訳(メタデータ) (2024-10-30T14:45:00Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
姿勢検出タスクにLadder-of-Thought(LoT)を導入する。
LoTは、小さなLMに高品質な外部知識を同化させ、生成した中間的論理を精査するように指示する。
実験では, 姿勢検出タスクにおけるCoTのGPT-3.5よりも16%改善し, 10%向上した。
論文 参考訳(メタデータ) (2023-08-31T14:31:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。