論文の概要: PLAME: Lightweight MSA Design Advances Protein Folding From Evolutionary Embeddings
- arxiv url: http://arxiv.org/abs/2507.07032v2
- Date: Sun, 07 Sep 2025 00:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-09 14:07:03.172602
- Title: PLAME: Lightweight MSA Design Advances Protein Folding From Evolutionary Embeddings
- Title(参考訳): 軽量のMSAデザインが進化的埋め込みからタンパク質の折りたたみを進化させる
- Authors: Hanqun Cao, Xinyi Zhou, Zijun Gao, Chenyu Wang, Xin Gao, Zhi Zhang, Chunbin Gu, Ge Liu, Pheng-Ann Heng,
- Abstract要約: マルチシークエンスアライメント(MSA)は低ホモロジーおよび孤児タンパク質で機能する。
我々は、下流の折り畳みをより良くサポートするMSAを生成する軽量なMSA設計フレームワークPLAMEを紹介する。
AlphaFold2の低ホモロジー/孤児ベンチマークでは、PLAMEは構造精度の最先端の改善を提供する。
- 参考スコア(独自算出の注目度): 53.452711369785106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Protein structure prediction often hinges on multiple sequence alignments (MSAs), which underperform on low-homology and orphan proteins. We introduce PLAME, a lightweight MSA design framework that leverages evolutionary embeddings from pretrained protein language models to generate MSAs that better support downstream folding. PLAME couples these embeddings with a conservation-diversity loss that balances agreement on conserved positions with coverage of plausible sequence variation. Beyond generation, we develop (i) an MSA selection strategy to filter high-quality candidates and (ii) a sequence-quality metric that is complementary to depth-based measures and predictive of folding gains. On AlphaFold2 low-homology/orphan benchmarks, PLAME delivers state-of-the-art improvements in structure accuracy (e.g., lDDT/TM-score), with consistent gains when paired with AlphaFold3. Ablations isolate the benefits of the selection strategy, and case studies elucidate how MSA characteristics shape AlphaFold confidence and error modes. Finally, we show PLAME functions as a lightweight adapter, enabling ESMFold to approach AlphaFold2-level accuracy while retaining ESMFold-like inference speed. PLAME thus provides a practical path to high-quality folding for proteins lacking strong evolutionary neighbors.
- Abstract(参考訳): タンパク質構造予測は、しばしば複数の配列アライメント(MSA)に依存し、それは低ホモロジーおよび孤児タンパク質に過小評価される。
我々は、事前訓練されたタンパク質言語モデルからの進化的埋め込みを利用して、下流の折り畳みをサポートするMSAを生成する軽量なMSA設計フレームワークPLAMEを紹介する。
PLAMEは、これらの埋め込みと、保存された位置の合意と、可塑性配列の変動のカバレッジのバランスをとる保存-多様性損失を結合する。
世代を超えて発展する
(i)高品質候補をフィルタリングするMSA選択戦略
(ii)深さに基づく測度と折り畳み利得の予測を補完するシーケンス品質計量。
AlphaFold2の低ホモロジー/孤児ベンチマークでは、PLAMEは構造精度(例: lDDT/TMスコア)の最先端の改善を提供し、AlphaFold3と組み合わせると一貫した利得を提供する。
アブレーションは選択戦略の利点を分離し、ケーススタディは、MSA特性がAlphaFoldの信頼性とエラーモードをいかに形成するかを明らかにする。
最後に、PLAME関数を軽量なアダプタとして示し、ESMFoldのような推論速度を維持しながら、ESMFoldがAlphaFold2レベルの精度に接近できるようにする。
したがってPLAMEは、強力な進化的隣人を持たないタンパク質に対して、高品質な折り畳みへの実践的な経路を提供する。
関連論文リスト
- AMix-1: A Pathway to Test-Time Scalable Protein Foundation Model [92.51919604882984]
本稿では,Flow Bayesian Networks上に構築された強力なタンパク質基盤モデルAMix-1を紹介する。
AMix-1は、事前学習のスケーリング法則、創発的能力分析、コンテキスト内学習機構、テスト時間スケーリングアルゴリズムを含む、体系的なトレーニング手法によって強化されている。
この基盤を基盤として、タンパク質設計を汎用フレームワークに統合するためのマルチシーケンスアライメント(MSA)ベースのコンテキスト内学習戦略を考案した。
論文 参考訳(メタデータ) (2025-07-11T17:02:25Z) - DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts [76.59606029593085]
DisProtBenchは、構造障害および複雑な生物学的条件下でタンパク質構造予測モデル(PSPM)を評価するためのベンチマークである。
DisProtBenchはデータの複雑さ、タスクの多様性、解釈可能性という3つの重要な軸にまたがっている。
その結果,機能的予測障害と相関する低信頼領域を有する障害下でのモデルロバスト性に有意な変動が認められた。
論文 参考訳(メタデータ) (2025-06-18T23:58:22Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
Emphde novoペプチドシークエンシングのための初となるNovoBenchベンチマークを報告する。
多様な質量スペクトルデータ、統合モデル、総合的な評価指標から構成される。
DeepNovo、PointNovo、Casanovo、InstaNovo、AdaNovo、$pi$-HelixNovoといった最近の手法が私たちのフレームワークに統合されています。
論文 参考訳(メタデータ) (2024-06-16T08:23:21Z) - MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training [48.398329286769304]
マルチシークエンスアライメント(MSA)は、タンパク質ファミリーの進化的軌道を明らかにする上で重要な役割を担っている。
MSAGPTは、低MSA状態下でのMSA生成前訓練を通じてタンパク質構造予測を促進する新しいアプローチである。
論文 参考訳(メタデータ) (2024-06-08T04:23:57Z) - Fine-tuning Protein Language Models with Deep Mutational Scanning improves Variant Effect Prediction [3.2358123775807575]
タンパク質言語モデル(PLM)は、タンパク質コード変異体の機能的影響と臨床的意義を予測するための高性能でスケーラブルなツールとして登場した。
深部突然変異走査法(DMS)による可変効果の実験的マップを用いたPLMの性能向上のための新しい微調整手法を提案する。
これらの結果から,DMSは配列多様性の有望な源であり,多変量効果予測のためのPLMの性能向上のための教師付きトレーニングデータであることが示唆された。
論文 参考訳(メタデータ) (2024-05-10T14:50:40Z) - Beyond ESM2: Graph-Enhanced Protein Sequence Modeling with Efficient Clustering [24.415612744612773]
タンパク質は生命の過程に必須であり、進化と多様性を支えている。
シークエンシング技術の進歩により数百万のタンパク質が明らかにされ、生物学的分析とAI開発のための高度な事前学習されたタンパク質モデルの必要性が強調されている。
FacebookのESM2は、これまでで最も先進的なタンパク質言語モデルであり、教師なし学習にマスク付き予測タスクを活用し、顕著な生化学的精度でアミノ酸表現を作成する。
しかし、機能的なタンパク質の洞察の提供に欠けており、表現の質を高める機会を示唆している。
本研究は,タンパク質ファミリー分類をESM2のトレーニングに組み込むことにより,このギャップに対処する。
論文 参考訳(メタデータ) (2024-04-24T11:09:43Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Enhancing the Protein Tertiary Structure Prediction by Multiple Sequence
Alignment Generation [30.2874172276931]
我々はMSA-Augmenterを導入し、データベースに存在しない新規なタンパク質配列を生成する。
CASP14で行った実験では、MSA-Augmenterは、下層のMSAから共進化情報を保持できるde novo配列を生成できることが示されている。
論文 参考訳(メタデータ) (2023-06-02T14:13:50Z) - Unsupervisedly Prompting AlphaFold2 for Few-Shot Learning of Accurate
Folding Landscape and Protein Structure Prediction [28.630603355510324]
そこで我々は,メタ生成モデルであるEvoGenを提案し,貧弱なMSAターゲットに対するAlphaFold2のアンダーパフォーマンスを改善する。
EvoGenは、キャリブレーションまたは実質的に生成されたホモログシーケンスでモデルにプロンプトすることで、AlphaFold2を低データで正確に折り畳むのに役立つ。
論文 参考訳(メタデータ) (2022-08-20T10:23:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。