Comparative Analysis of CNN and Transformer Architectures with Heart Cycle Normalization for Automated Phonocardiogram Classification
- URL: http://arxiv.org/abs/2507.07058v1
- Date: Tue, 08 Jul 2025 13:17:26 GMT
- Title: Comparative Analysis of CNN and Transformer Architectures with Heart Cycle Normalization for Automated Phonocardiogram Classification
- Authors: Martin Sondermann, Pinar Bisgin, Niklas Tschorn, Anja Burmann, Christoph M. Friedrich,
- Abstract summary: Two specialized convolutional neural networks (CNNs) and two zero-shot universal audio transformers (BEATs) were evaluated.<n>A custom heart cycle normalization method tailored to individual cardiac rhythms is introduced.<n>The CNN model with fixed-length windowing achieves 79.5%, the CNN model with heart cycle normalization scores 75.4%, the BEATs transformer with fixed-length windowing achieves 65.7%, and the BEATs transformer with heart cycle normalization results in 70.1%.
- Score: 0.44203325605537613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automated classification of phonocardiogram (PCG) recordings represents a substantial advancement in cardiovascular diagnostics. This paper presents a systematic comparison of four distinct models for heart murmur detection: two specialized convolutional neural networks (CNNs) and two zero-shot universal audio transformers (BEATs), evaluated using fixed-length and heart cycle normalization approaches. Utilizing the PhysioNet2022 dataset, a custom heart cycle normalization method tailored to individual cardiac rhythms is introduced. The findings indicate the following AUROC values: the CNN model with fixed-length windowing achieves 79.5%, the CNN model with heart cycle normalization scores 75.4%, the BEATs transformer with fixed-length windowing achieves 65.7%, and the BEATs transformer with heart cycle normalization results in 70.1%. The findings indicate that physiological signal constraints, especially those introduced by different normalization strategies, have a substantial impact on model performance. The research provides evidence-based guidelines for architecture selection in clinical settings, emphasizing the need for a balance between accuracy and computational efficiency. Although specialized CNNs demonstrate superior performance overall, the zero-shot transformer models may offer promising efficiency advantages during development, such as faster training and evaluation cycles, despite their lower classification accuracy. These findings highlight the potential of automated classification systems to enhance cardiac diagnostics and improve patient care.
Related papers
- From Motion to Meaning: Biomechanics-Informed Neural Network for Explainable Cardiovascular Disease Identification [1.1142444517901016]
We utilize the energy strain formulation of Neo-Hookean material to model cardiac tissue deformations.<n>We estimate the local strains within the moving heart and extract a detailed set of features used for cardiovascular disease classification.
arXiv Detail & Related papers (2025-07-08T08:43:05Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - HeartBEiT: Vision Transformer for Electrocardiogram Data Improves
Diagnostic Performance at Low Sample Sizes [28.88454028731653]
We create the first vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis.
We show that HeartBEiT has significantly higher performance at lower sample sizes compared to other models.
We also show that HeartBEiT improves explainability of diagnosis by highlighting biologically relevant regions of the EKG vs. standard CNNs.
arXiv Detail & Related papers (2022-12-13T16:39:21Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Heart-Darts: Classification of Heartbeats Using Differentiable
Architecture Search [22.225051965963114]
Arrhythmia is a cardiovascular disease that manifests irregular heartbeats.
In arrhythmia detection, the electrocardiogram (ECG) signal is an important diagnostic technique.
With the application of convolutional neural networks (CNNs), the evaluation process has been accelerated and the performance is improved.
arXiv Detail & Related papers (2021-05-03T08:57:48Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.